The Minimum You Need to Know

About Java and xBase]J

Roland Hughes

Logikal Solutions




Copyright © 2010 by Roland Hughes
All rights reserved
Printed and bound in the United States of America

ISBN-13 978-0-9823580-3-0
This book was published by Logikal Solutions for the author. Neither Logikal Solutions nor the author shall be

held responsible for any damage, claim, or expense incurred by a user of this book and the contents presented
within or provided for download at http://www.theminimumyouneedtoknow.com.

These trademarks belong to the following companies:

Borland Borland Software Corporation
Btrieve Btrieve Technologies, Inc.
C-Index/II Trio Systems LLC

Clipper Computer Associates, Inc.
CodeBase Software Sequiter Inc.

CodeBase++ Sequiter Inc.

CommLib Greenleaf Software

Cygwin Red Hat, Inc.

DataBoss Kedwell Software
DataWindows Greenleaf Software

dBASE dataBased Intelligence, Inc.
DEC Digital Equipment Corporation
DEC BASIC Hewlett Packard Corporation
DEC COBOL Hewlett Packard Corporation
Foxbase Fox Software

FoxPro Microsoft Corporation
FreeDOS Jim Hall

GDB Greenleaf Software

HP Hewlett Packard Corporation
IBM International Business Machines, Inc.
Java Sun Microsystems, Inc.
Kubuntu Canonical Ltd.

Linux Linus Torvals

Lotus Symphony International Business Machines, Inc.
MAC Apple Inc.

MappppQuest MapQuest, Inc.

MySQL MySQL AB

Netware Novell, Inc.

OpenVMS Hewlett Packard Corporation
OpenOffice Sun Microsystems, Inc.
openSuSE Novell, Inc.

ORACLE Oracle Corporation

0OS/2 International Business Machines, Inc.
Paradox Corel Corporation

Pro-C Pro-C Corp.

Quicken Intuit Inc.

RMS Hewlett Packard Corporation
RDB Oracle Corporation
SourceForge SourceForge, Inc.

Ubuntu Canonical Ltd.


http://www.theminimumyouneedtoknow.com/

Unix Open Group

Visual Basic Microsoft Corporation

Watcom Sybase

Windows Microsoft Corporation

Zinc Application Framework Professional Software Associates, Inc.

All other trademarks inadvertently missing from this list are trademarks of their respective owners. A best effort
was made to appropriately capitalize all trademarks which were known at the time of this writing. Neither the
publisher nor the author can attest to the accuracy of any such information contained herein. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.






Additional Books by Roland Hughes

You can always find the latest information about this book series by visiting http:/
www.theminimumyouneedtoknow.com. Information regarding upcoming and out-of-print books
may be found by visiting http://www.logikalsolutions.com and clicking the “upcoming and out of
print books” link. At the time of this writing, Logikal Solutions and Roland Hughes offer the
following books either in print or as eBooks.

The Minimum You Need to Know About Logic to Work in IT
ISBN-13 978-0-9770866-2-7

Pages: 154
Covers logic, flowcharting, and pseudocode. If you only learned OOP, you really need
to read this book first.

The Minimum You Need to Know To Be an OpenVMS Application Developer
ISBN-13 978-0-9770866-0-3

Pages: 795

Includes CD-ROM
Covers DCL, logicals, symbols, command procedures, BASIC, COBOL, FORTRAN, C/
C++, Mysql, RDB, MMS, FMS, RMS indexed files, CMS, VMSPhone, VMSMAIL,
LSE, TPU, EDT and many other topics. This book was handed out by HP at a technical
boot camp because the OpenVMS engineering team thought so highly of it.

The Minimum You Need to Know About Java on OpenVMS, Volume 1
ISBN-13 978-0-9770866-1-0

Pages: 352

Includes CD-ROM
Covers using Java with FMS and RMS indexed files. There is a lot of JNI coding. We
also cover calling OpenVMS library routines, building with MMS and storing source in
CMS.


http://www.logikalsolutions.com/
http://www.theminimumyouneedtoknow.com/
http://www.theminimumyouneedtoknow.com/

The Minimum You Need to Know About Service Oriented Architecture

ISBN-13 978-0-9770866-6-5

Pages: 370

The National Best Books 2008 Award Winner — Business: Technology/Computer
Covers accessing your MySQL, RDB, and RMS indexed file data silos via Java and port
services from a Linux or other PC front end. Also covers design and development of
ACMS back end systems for guaranteed execution applications.

Infinite Exposure

ISBN-13 978-0-9770866-9-6

Pages: 471
A novel about how the offshoring of IT jobs and data centers will lead to the largest
terrorist attack the free world has ever seen and ultimately to nuclear war.

There are a number of reviews of this book available on-line. The first 18 chapters are
also being given away for free at BookHabit, ShortCovers, Sony' s eBook store, and many
other places. If you can' t decide you like it after the first 18 chaptersRoland really

doesn' t want to do business with you.



Source Code License

This book is being offered to the public freely, as is the source code. Please leave comments
about the source of origin in place when incorporating any portion of the code into your own projects
or products.

Users of the source code contained within this book agree to hold harmless both the author and
the publisher for any errors, omissions, losses, or other financial consequences which result from
the use of said code. This software is provided “as is” with no warranty of any kind expressed or
implied.

Visit http://www.theminimumyouneedtoknow.com to find a download link if you don' want
to retype or cut and paste code from this book into your own text editor.


http://www.theminimumyouneedtoknow.com/










Introduction

Why This Book?

I asked myself that same question every day while I was writing it. Why am I going to write
a book much like my other books and give it away for free? The simple answer is that I had to do
a lot of the research anyway. If I have to do that much research, then I should put out a book.
Given the narrowness of the market and the propensity for people in that market to believe all
software developers work for free, the book would physically sell about two copies if I had it
printed. (Less than 1/10th of 1% of all Linux users actually pay for any software or technology
book they use.)

What started me down this path was a simple thing. In order to make a Web site really work,
a family member needed to be able to calculate the 100 mile trucking rate for the commodity
being sold. The commercial Web site had a really cool feature where it would automatically sort
all bids within 300 miles based upon the per-bushel profit once the transportation costs were taken
out. The person already had a printed list of the trucking rates, so how difficult could it be?

Some questions should never be asked in life. “What could go wrong?” and ‘How difficult
could it be?” are two which fall into that category. When you ask questions like that, you tend to
get answers you were unprepared to hear.

In my early DOS days, I would have sat down and begun coding up a C program using
Greenleaf DataWindows and the Greenleaf Database library. Of course, back then, we didn' t have
the Internet, so I would have had to use the Greenleaf CommLib to dial out to some BBS to get
the DOE (Department of Energy) national average fuel price.

During later DOS days, but before Microsoft wrote a task-switching GUI that sat on top of
DOS and that was started by typing WIN at the C:> prompt which they had the audacity to call
“The Windows Operating System,” I would have reached for a C/C++ code generator like Pro-C
from Vestronix (later Pro-C Corp.) or DataBoss from Kedwell Software. Neither program did
communications, but both could be used to quickly lay out xBASE databases, generating entry/
maintenance screens, menus, and reports in a matter of minutes. You could create an entire
application that used just a few files for distribution, all of which could be copied into a single
directory, and the user would be happy.



12 Chapter [ - Fundamentals

Once Windows came out, things got ugly. I did a lot of OS/2 work, even though not many
companies or people used it. The problem with OS/2 was that IBM had Microsoft develop it and
Microsoft was intent on ensuring that OS/2 would never be a threat to Windows. (Windows
wasn' éven an actual operating system until many years after OS/2 came out.) Once IBM had the
bulk of the Microsoft code removed from it, OS/2 became an incredibly stable platform which
managed memory well. IBM didn' manage it well, saddling developers with expensive device
driver development tools that would only work with an increasingly hard-to-find version of
Microsoft C.

Most of us did cross-platform development in those days. I used Watcom C/C++ for DOS,
Windows, and OS/2 development (now OpenWatcom as the project is OpenSource). It was easy
when you used the Zinc Application Framework for your GUIL. There were a ton of cross-
platform indexed file libraries. Greenleaf supported a lot of compilers and platforms with its
Database library for xBASE files. Of course, there were a lot of shareware and commercial Btree
type indexed file systems out there. These had the advantage of locking the user into your
services. These had the disadvantage of locking the user into your services. They weren' tidely
supported by ‘common tools” like spreadsheets and word processors. The one I remember using
the most was C-Index/II from Trio Systems LLC. As I recall it was written generically enough
that it actually worked on DOS, MAC, Windows, and OS/2. Of course, that was during the brief
period in life when the Metrowerks CodeWarrior toolset supported the MAC.

In short, from the 80s through the end of the 90s we always had some way of creating a
stand-alone application with its own indexed local data storage that didn' tequire lots of other
things to be installed. When Windows started going down the path of ‘heeding lots of other stuff”
was when you started seeing companies selling software to do nothing other than develop
installation programs for Windows.

As an application developer who is quite long in the tooth, I don' tvant to link with DLLs,
shared libraries, installed images, or any other thing which is expected to be installed on the target
platform. I have heard every justification for it known to man. I was there and listened to people
slam my C program because their Visual Basic (VB) application took only 8K and ‘looked
slicker” than my application which consumed an entire floppy. I was also there to watch
production come to a screeching halt when a new version of the VB run-time got installed to
support some other ‘mission critical app” only to find all previous apps were now incompatible.
(The machine running my C program which took a whole floppy continued to keep the business it
supported running while much screaming and finger-pointing was going on all around it.)



Chaprer I — Fundamentals 13

Why this book? Because the person downloading your SourceForge project or other free
piece of software doesn' tonsider recompiling a Linux Kernel a fun thing to do in his or her free
time.

Why this book? Because Mom and Dad shouldn' thave to take a course on MySQL
administration just to enter their expenses and file their taxes.

Why this book? Because I had to do all of this research, which meant I had to take a lot of
notes anyway.

Why this book? Because OpenSource libraries don' t come with squat for documentation.

Why xBase]J?

That' sa good question. Part of the answer has to do with the history I provided in the
previous section. The other part has to do with the language chosen.

I don' do much PC programming anymore. I needed this application to run on both Ubuntu
Linux and Windows. There isn' ta ‘good” OpenSource cross-platform GUI library out there.
Most of the Linux GUI libraries require a lot of stuff to be installed on a Windows platform
(usually the bulk of Cygwin) and that requires writing some kind of installation utility. Let' gust
say that the OpenSource installation generation tools for Windows haven' quite caught up to their
expensive commercial counterparts. You don' teally want to saddle a Windows machine which
has the bare minimum Windows configuration with something like Cygwin on top of it.

When I did do PC programming, I never really did much with TCP/IP calls directly. If I
magically found an OpenSource cross-platform GUI which did everything I needed on both Linux
and Windows, I was still going to have to find a cross-platform TCP/IP library. Let us not forget
that some 64-bit Linux distros won' tun 32-bit software and some 32-bit software won' tun on
64-bit versions of Windows Vista. Programming this in C/C++ was going to require a lot more
effort than I wanted to put into something I would basically hand out free once it was working
correctly. (You may also have noticed I didn' even mention finding a library which would work
on Windows, Linux, zzZMAC.)

Java, while not my favorite language, tends to be installed on any machine which connects to
the Internet. Most Windows users know where to go to download and install the JRE which isn' t
installed by default for some versions of Windows. From what I hear, the pissing contest is still
going on between what is left of Bill Gates' s Evil Empire and what is left of Sun.

Java, while not my favorite language, provides a GUI for almost every platform it runs on.



14 Chapter [ - Fundamentals

Java, while not my favorite language, makes opening a URL and parsing through the text to
find certain tokens pretty simple if you happen to know what class to use.

Java, while not my favorite language, will not care if the underlying operating system is 32-
or 64-bit.

Most machines which use a browser and connect to the Web have some form of the Java
Run-time Environment (JRE) installed on them. This is true of current Linux, MAC, and
Windows machines.

Obviously I was going to have to develop this package with a language that wasn' tmy
favorite.

The only question remaining was data storage. Would I force Mom, Dad, and Aunt Carol to
enroll in a MySQL administration course even though they can barely answer email and find
MapQuest on the Internet, or was I going to use something self-contained? Given my earlier
tirade, you know I wanted to use something self-contained just to preserve my own sanity.

At the time of this writing, a search on SourceForge using “java index file” yields just shy of
29,000 projects and a search using ‘java xbase” yields just shy of 20,000 projects. Granted, after
you get several pages into the search results, the percentage of relevancy drops exponentially, but
there are still a lot of choices. Btree type indexed files which store the index in the file with the
data tend to be far more reliable from a data integrity standpoint. All indexes are always kept in
sync by the library/engine. xBASE type files store the indexes off in different files. You can add
all of the records you want to an xBASE data file without ever updating an index.

I can hear the head-scratching now. ‘But if that' srue, why would you use 30-year-old
xBASE technology instead of a Btree?” Because of the tools, child. OpenOffice can open a DBF
file in a spreadsheet to let a user view the data. If any of these files become corrupted there are
literally hundreds of xXBASE repair tools out there. If a user decides he or she wants to load the
data into some other database format for analysis, there are tools out there to export xXBASE into
CSV (Comma Separated Value) files which can easily be imported by most relational database
engines. Some relational database engines can directly import XBASE files. Nearly every
programming language out there has some form of xBASE library, or can call one written in some
other language. Perl even has an xBASE library that I' vaised to extract data from an expense
tracking system before. Under Linux, there is even a dbf_dump utility (dbfdump on OpenSuSE
for some reason) which will let you dump a DBF file to a CSV in one command.

dbfdump /windows/D/net_f/xpns_S$tax_year/payee.dbf > payee.csv



Chaprer I — Fundamentals 15

What happens if I use one of those really fast Btree or B+tree libraries and the user needs to
get the data out? Such users cuss me pretty hard when none of the office suites on their computer
can open the file to do an export. When they track me down via the Web and call my office, they
get disappointed finding out I don' have time to drop everything and fly to their location to help
them free of charge. Then they say my name, spit, and start bad-mouthing me all over the
Internet. 77arreally helps my consulting business.

Now that we have determined the data will be stored in an xBASE file format, we only have
to choose an OpenSource xBASE library for Java. I selected xBaseJ because it used to be a
commercial library known as XbaseJ and was sold by BMT Micro. The product has since become
an OpenSource Project which gets periodic improvements. The developer actually monitors his
SourceForge support forum and seems to be actively adding new things to the library. Some
things don' twork out so well, like the DTD to xBASE XML parser, but the attempt was made.
Someone else in the community might finish it.

Please pay attention to the thought process of this section. A seasoned systems analyst and/or
consultant goes through exactly this thought process when he or she tries to design a system. You
look at what is available on the target platform, then walk backwards trying to reduce the amount
of pain you feel when you can' thange the target platform. I cannot change the computers people
have, nor their personal skill levels. I have to design an application based upon the ability of the
user, not my ability to be creative, or the tools I would prefer to use.

A Brief History of xBASE

There are many variations in the capitalization of xBASE, which is I guess fitting, since there
are many slight variations for the actual file formats. The history of xBASE is a sordid tale, but
all versions of xBASE in one way or another trace their roots back to the 1970s and the Jet
Propulsion Laboratory. Here is the tale as best I can remember.

PCs were originally very expensive. In the late 1970s you could buy a ‘well equipped”
Chevrolet Caprice Classic 4-door sedan for just over $4,000. In the early 1980s you could buy a
dual floppy monochrome PC for about the same amount. When clone vendors entered the market
you started seeing dual floppy clone PCs for under $2,000. The higher-end PCs started adding
full height I0MEG hard drives to justify keeping their price so high. Eventually, you could get a
clone PC with a whopping 20MEG hard drive for nearly $2000.



16 Chapfter [ - Fundamentals

Once that $2000 price point for a PC with a hard drive was achieved, the PC started getting
pushed into the world of business. The first thing the businesses wanted to do with it was keep
things in sorted order. They heard from kids enrolled in computer programming courses that
midrange and mainframe computers used a language called COBOL which supported indexed
files that could be used to store invoices, payments, etc., all in sorted order, so information was
quickly (for the day) retrievable. Well, the PC didn' tave that, and business users needed it.
There was a non-commercial product called Vulcan written by Wayne Ratliff which kind of
answered some of those needs. Ashton-Tate eventually released a commercial product named
dBASE II. (They used II instead of I to make the product seem more stable. I' mmot making that

up.)

Ashton-Tate had a lot of sales, a lot of money, a lot of attitude, and a lot of lawyers. This led
to them believing they had the rights to all things dBASE. When the cash cow started giving lots
of green milk the clone vendors piled into the fray. Ashton-Tate let loose with a blizzard of
lawsuits trying to show it was the meanest dog in the junkyard. The clone vendors quickly got
around the dBASE trademark infringement by calling their file formats xBASE. (Some called
theirs X-Base, others XBase, etc.)

Times and public sentiment turned against Ashton-Tate. The people who spent many
hundreds of dollars for these tools and even more money for some of the run-time licenses which
had to be in place on the machines before applications written with the tool wanted a standard.
When they were finally fed up with Ashton-Tate or one of the clones, they naively believed it
would be like those old COBOL programs, recompile and run. Silly customers. This was the
peak of proprietary software (the height of which turned out to be Microsoft Windows, which
even today is considered one of the most proprietary operating systems running on a PC
architecture), and there was no incentive for any of those receiving run-time license fees to agree
to a standard. Well, no incentive until the business community as a whole deemed the fees they
charged too high.

When the price of a run-time license reached hundreds, the business community cried foul.
When the memory footprint of the run-time meant you couldn' foad network drivers or other
applications in that precious 640K window accessible by DOS, dirty laundry got aired rather
publicly.



Chapter [ — Fundamentals 17

Vulture Capitalists, always sniffing the wind for dirty laundry and viewing it as opportunity,
started hurling money at software developers who said they could write a C programming library
which would let other programmers access these files without requiring a run-time image or
license. The initial price tag for those libraries tended to be quite high. Since there were no
royalty payments, the developers and the Vulture Capitalists thought the ‘best” price they could
offer was something totalling about half of what the big corporations were currently paying for
development + run-time license fees. For a brief period of time, they were correct. Then the
number of these libraries increased and the price got down to under $500 each. The companies
vending products which required run-time license fees saw their revenue streams evaporate.

The evaporation was a good thing for the industry. It allowed Borland to purchase Ashton-
Tate in 1991. Part of the purchase agreement appears to have been that Ashton-Tate drop all of its
lawsuits.  After that committee ANSI/X3J19 was formed and began working on xBASE
standards. In 1994 Borland ended up selling the dBASE name and product line to dBASE Inc.

The standards committee accomplished little, despite all the major vendors participating.
More of the data file formats, values, and structures were exposed by each vendor, but each of the
vendors in the meetings wanted every other vendor to adopt sz programming language and
methods of doing things so it would be the first to market with the industry standard.

There are still commercial XBASE vendors out there. Microsoft owns what was Foxbase.
dBASE is still selling products and migrating into Web application creation. Most of the really
big-name products from the late 80s are still around; they just have different owners. Sadly,
Lotus Approach was dropped by IBM and not resurrected when it came out with the Symphony
Office Suite.

I will hazard a guess that some of the C/C++ xBASE programming libraries from my DOS
days are still around and being sold by someone. That would make sense now that FreeDOS is
starting to get a following. Not quite as much sense given all of the OpenSource C/C++ xBASE
libraries out there, but the old commercial tools have a lot more time in the field,and should
therefore be more stable. I know that Greenleaf is back in business and you can probably get a
copy of GDB (Greenleaf Database) from them; I just don' t know what platforms they still support.

There is a lot of history and folklore surrounding the history of XBASE. You could probably
make a movie out of it like they made a movie out of the rise of Microsoft and Apple called
‘Pirates of Silicon Valley” in 1999. You can piece together part of the history, at least from a
compatibility standpoint, by obtaining a copy of 7% dBASE Language Handbook written by
David M. Kalman and published by Microtrend Books in 1989. Another work which might be
worthy of your time is Xbase Cross Reference Handbook written by Sheldon M. Dunn and



18 Chapfter [ - Fundamentals

published in 1993 by Sybex, Inc.

For our purposes, you only need to know that back in the 1970s the Jet Propulsion
Laboratory needed an indexed file system to store data for various retrieval needs. What they
designed eventually developed many flavors, but all of those flavors are now lumped under the
xBASE heading by the general public.

What is xBASE?

Nore: This information is correct. You will find other information on the Web which
completely contradicts portions of this information, and it will also be correct. What you have to
take into account is the pozns 7 z7me the information references. There are some new tools on the
market which claim they are xBASE and have no maximum file size. As you will see later, this is
not the original xBASE, which has a 1,000,000,000 byte file size limit, nor the later DOS/
Windows xBASE products, which eventually expanded the maximum file size to 2GB. xBASE
evolved with the DOS PC from the time when we had dual floppy systems which would have at
least 64K of RAM, but could have all the way up to 640K. There was a time when the largest
hard drive you could buy for a PC on the retail market was 20MB.

Note 2 A lot of well-meaning people have taken the time to scan in or re-key documentation
from the 1980s which shipped with various products. I applaud their efforts. Hopefully we will
find some method of parsing through all of this documentation and updating it for today'
environment. The most confusing things you will read are where actual product literature says,
“The maximum file size is 1,000,000,000 bytes unless large disk support is enabled, then you are
limited only by the size of your disk.” At the point in time when the author wrote that the XBASE
format could store 2GB and the largest disk drive on the market was 1.08GB. The statement is
blatantly wrong now, but the on-line documentation is still trapped at that point in time. I
remember this point in time well. Shortly after that documentation came out, SCSI drives started
increasing in size all of the way up to 8GB in less than a year. A lot of customers hit that 2GB
wall pretty hard, then reached for lawyers claiming fraud. It wasn' deliberate fraud, it was simply
outdated information.

Most on-line references will say that Xbase (XBASE) is a generic term for the dBASE family
of database languages coined in response to threats of litigation over the copyrighted trademark
‘dBASE.” That would be true for a point in time long ago. Today xBASE really refers to the
data storage specification, not the language(s) involved in the application. People who are
programmers know this; people who aren' programmers don' appear to have the ability to reason
1t out.

w2



Chaprer I — Fundamentals 19

I have already talked about the various C/C++ xBASE libraries which are out there. If the
definition found on-line were true, it would require those libraries to parse a dBASE script and
execute it, rather than directly access the data and index files. The same would be required of the
xBaseJ library we will be covering in this book. Most libraries don' provide any kind of script
parsing capability. What they do provide are functions with names very close to some of the
original dBASE syntax, along with a lot of other functions that access the data and index files.

Putting it in simple terms, xBASE is a system of flat files which can organize data in a useful
manner when one or more specific sets of format rules are followed. Each file is in two parts: a
file header and actual contents. Each header has two parts: a file descriptor and a content
descriptor. A lot of definitions you find published and on-line won' tise the word ‘tontent,” they
will use the word ‘record.” Those definitions are only accurate for the data file. While it is true
that each index value could be viewed as a record containing a key value, record number, sort
order information and other internal data, we don' have any concept of the record organization
unless we are writing an XBASE library of some kind.

The above does not describe a relational database by any stretch of the imagination. There
have been various products on the market which put SQL type syntax around xBASE file
structures, but the organization really is flat file. If you have gone to school for computer

Lt}

programming, you may have encountered the term ‘relative file.” A relative file is accessed by
record number, not a key value. It is one of the simplest file structures to create and is the

foundation of several other file systems.

You may have also encountered the term ‘hashed file” or ‘hash file.” This is an
enhancement to the relative file. A particular field or set of fields is chosen from a record to be
considered a ‘key value.” Some form of algorithm (usually a math function) is fed the key value
and out the other side of the function comes the record number where the record you want
‘should” be. If you have a really bad hash algorithm you end up with multiple keys hashing to
the same record number, a condition known as ‘hash collision” or simply ‘collision.” The
program then has to go sequentially through from that record either forward or backward
depending upon key sort order, until it finds the record you are looking for, or a key so different
that it can tell your record isn' in the file. Almost every programmer has to write a program like
this while earning his or her bachelors degree.



20 Chapfter [ - Fundamentals

There was a lot of brain power involved with the creation of xBASE. You might remember
that T told you it was a creation which fell out of the Jet Propulsion Laboratory and into the
commercial world. When you write a data record to an xXBASE file, it gets written contiguously
in the next available slot. The actual record number is recorded with the key value(s) in the
indexed files which are both open and associated with the data file. When you want to find a
record, all of the dancing occurs in the file containing the index. As a general rule key values are
smaller than record values so you can load/traverse many more of them in a shorter period of
time. Once the engine locates the key, it has the record number for a direct read from the data
file. The really good libraries and engines will also verify the key on the record read actually
matches the key value from the index file. (More on that topic later.)

I don' know what magic actually happens when the key is being processed and I don' tare.
If you really want to find out, xBaseJ comes with source code, as do many other OpenSource
projects which create and process xBASE files. Pull down the source and plow through it. From
an application developer standpoint, all we need to know is that if the index file is open and
associated with the data file, it will be updated. When a key is found we get the record and when
itisn' t we get an error value.

It is important to note that the original xBASE file systems stored only character data in the
data files. Numbers and dates were all converted to their character representations. This severe
restriction made the design highly portable. Binary data is far more efficient when it comes to
storage, but tends to be architecture specific. (Refer to ‘The Minimum You Need to Know to Be
an OpenVMS Application Developer” ISBN-13 978-0-9770866-0-3 page 10-3 for a discussion
on Little Endian vs. Big Endian and data portability.)

Another benefit this severe restriction created was that it allowed non-programmers the
ability to create databases. The average Joe has no idea what the difference between Single and
Double precision floating point is or even what either of those phrases mean. The average MBA
wouldn' know what G_FLOAT, F_FLOAT, and D_FLOAT were or that they exist even if the
terms were carved on a 2x4 that smacked them between the eyes. The average user could
understand “9 digits in size with 3 decimal digits,” though. By that time in America, most
everyone had filled out some government tax withholding or other form that provided neat little
boxes for you to write digits in.



Chapter [ — Fundamentals 21

DOS, and by extension Windows, made significant use of three-character file extensions to
determine file types. Linux doesn' support file extensions. It can be confusing for a PC user
when they see MYFILE.DBF on a Linux machine and they hear the “” is simply another
character in a file name. It is even more confusing when you read documentation for applications
written initially for Linux, like OpenOffice, and it talks about ‘files with an ODT” extension. I
came from multiple operating systems which all used file extensions. I don' tare that I' nwriting
this book using Lotus Symphony on KUbuntu, I' ngoing to call “NNN” a file extension and the
purists can just put their fingers in their ears and hum really loud.

The original file extension for the dBASE data file was .DBF. Some clone platforms changed
this, and some did not. It really depended on how far along the legal process was before the suits
were dropped. In truth, you could use nearly any file extension with the programming libraries
because you passed the entire name as a string. Most of the C/C++, and Java libraries look at a
special identifier value in the data file to determine if the file format is dBASE III, dBASE 1V,
dBASE III with Memo, dBASE IV with Memo, dBASE V without memo, FoxPro with Memo,
dBASE IV with SQL table, Paradox, or one of the other flavors. Foxbase and FoxPro were
actually two different products.

The Memo field was something akin to a train wreck. This added the DBT file extension to
the mix (FPT for FoxPro.) A Memo field was much as it sounded, a large free-form text field. It
came about long before the IT industry had an agreed upon ‘best practice” for handling variable
length string fields in records. The free form text gets stored as an entity in the DBT file, and a
reference to that entity was stored in a fixed length field with the data record.

You have to remember that disk space was still considered expensive and definitely not
plentiful back in those days. Oh, we thought we would never fill up that SOMEG hard drive when
it was first installed. It didn' take long before we were back to archiving things we didn' heed
right away on floppies.

The memo field gave xBASE developers a method of adding “comments sections” to records
without having to allocate a great big field in every data record. Of course, the memo field had a
lot of different flavors. In some dialects the memo field in the data record was 10 bytes plus
however many bytes of the memo you wanted to store in the data record. The declaration M25
would take 35 bytes in the record. According to the CodeBase++ version 5.0 manual from
Sequiter Software, Inc., the default size for evaluating a memo expression was 1024. The built-in
memo editor/word processor for dBase III would not allow a user to edit more than 4000 bytes for
a memo field. You had to load your own editor to get more than that into a field.



22 Chapter [ - Fundamentals

Memo files introduced the concept of “block size” to many computer users and developers.
When a memo file was created it had a block size assigned to it. All memo fields written to that
file would consume a multiple of that block size. Block sizes for dBASE III PLUS and Clipper
memo files were fixed at 512 and there was a maximum storage size of 32256 bytes. Foxpro 2.0
allowed a memo block size to be any value between 33 and 16384. Every block had 8 bytes of
overhead consumed for some kind of key/index value.

Are you having fun with memo fields yet? They constituted a good intention which got
forced into all kinds of bastardizations due to legal and OS issues. Size limitations on disks
tended to exceed the size limitations in memory. DOS was not a virtual memory OS, and people
wanted ANSI graphics (color) applications, so, something had to give. A lot of applications
started saying they were setting those maximum expression sizes to limit memo fields to 1024
bytes (1008 if they knew what they were doing 512 — 8 = 504 * 2 = 1008.) Naturally the users
popped right past the end of this as they were trying to write War and Peace in the notes for the
order history. Sometimes they were simply trying to enter delivery instructions for rural areas
when it happened. There were various ‘Standard” sizes offered by all of the products during the
days of lawsuits and nasty grams. 4096 was another popular size limit, as was 1.5MEG.

The larger memo size limits tended to come when we got protected mode run-times that took
advantage of the 80286 and 32-bit DOS extenders which could take advantage of the
80386/80486 architectures. (The original 8086/8088 CPU architecture could only address 1 Meg
of RAM while the 80286 could address 16 Meg in protected mode. The 80386DX could address
4GB directly and 64TB of virtual memory.) I just checked the documentation at http://
www.dbase.com and they claim in the current product that a memo field has no limit. I also
checked the CodeBase++ 5.0 manual, and Appendix D states memo entry size is limited to 64K.
The 64K magic number came from the LIM (Lotus-Intel-Microsoft) EMS (Expanded Memory
Standard). You can read a pretty good write-up in layman' sterms by visiting http:/

www.atarimagazines.com/compute/issue136/68 The incredible expan.php

If you think memo fields were fun, you should consider the indexed files themselves. Indexes
aren' stored with the data in xBASE formats. Originally each index was off in its own NDX file.
You could open a data file without opening any associated index, write (or delete) records from it,
then close, without ever getting any kind of error. As a general rule, most ‘production”
applications which used xBASE files would open the data file, then rebuild the index they wanted,
sometimes using a unique file name. This practice ended up leaving a lot of NDX files laying
around on disk drives, but most developers engaging in this practice weren' trained professionals,
they were simply getting paid to program; there Zs a difference.


http://www.atarimagazines.com/compute/issue136/68_The_incredible_expan.php
http://www.atarimagazines.com/compute/issue136/68_The_incredible_expan.php
http://www.dbase.com/
http://www.dbase.com/

Chaprer I — Fundamentals 23

It didn' take long before we had Multiple Index Files (MDX), Compound Index Files (CDX),
Clipper Index Files (NTX), Database Container (DBC), and finally IDX files, which could be
either compressed or un-compressed. There may even have been others I don' t remember.

MDX was a creation which came with dBASE IV. This was a direct response to the
problems encountered when NDX files weren' tipdated as new records were added. You could
associate a “production” MDX file with a DBF file. It was promised that the ‘production” MDX
file would be automatically opened when the database was opened...unless that process was
deliberately overridden by a programmer. This let the run-time keep indexes up to date.
Additional keys could be added to this MDX up to some maximum supported number. I should
point out that a programmer could create non-production MDX files which weren' topened
automatically with the DBF file. (xBasel is currently known to have compatibility issues with
dBASE V formats and MDX files using numeric and/or date key datatypes.) MDX called the
keys it stored ‘tags” and allowed up to 47 tags to be stored in a single MDX.

While there is some commonality of data types with xXBASE file systems, each commercial
version tried to differentiate itself from the pack by providing additional capabilities to fields.
This resulted in a lot of compatibility issues.

‘ Type ‘ Description
+ Autoincrement — Same as long
@ Timestamp - 8 bytes - two longs, first for date, second for time. The date is the

number of days since 01/01/4713 BC. Time is hours * 3600000L + minutes *
60000L + Seconds * 1000L

B 10 digits representing a .DBT block number. The number is stored as a string, right
justified and padded with blanks. Added with dBase IV.

C ASCII character text originally < 254 characters in length. Clipper and FoxPro are
known to have allowed these fields to be 32K in size. Only fields <= 100 characters
can be used in an index. Some formats choose to read the length as unsigned which
allows them to store up to 64K in this field.

D Date characters in the format YYYYMMDD

F Floating point - supported by dBASE IV, FoxPro, and Clipper, which provides up to
20 significant digits of precision. Stored as right-justified string padded with blanks.

G OLE - 10 digits (bytes) representing a .DBT block number, stored as string, right-
justified and padded with blanks. Came about with dBASE V.



24

Chapter 7 - Fundamentals

Type

Description

Long - 4 byte little endian integer (FoxPro)

Logical - Boolean — 8 bit byte. Legal values

? = Not initialized

Y,y Yes

N,n No

F.f False

T,t True

Values are always displayed as ‘T”, ‘F”, or “?”. Some odd dialects (or more
accurately C/C++ libraries with bugs) would put a space in an un-initialized Boolean
field. If you are exchanging data with other sources, expect to handle that situation.

10 digits (bytes) representing a DBT block number. Stored as right-justified string
padded with spaces.

Some xBASE dialects would also allow declaration as Mnn, storing the first nn bytes
of the memo field in the actual data record. This format worked well for situations
where a record would get a 10-15 character STATUS code along with a free-form
description of why it had that status.

Paradox defined this as a variable length alpha field up to 256MB in size.

Under dBASE the actual memo entry (stored in a DBT file) could contain binary
data.

xbases does not support the formar Mnn and neither do mosr OpenSource 100/5s.

Numeric Field — 19 characters long. FoxPro and Clipper allow these fields to be 20
characters long. Minus sign, commas, and the decimal point are all counted as
characters. Maximum precision is 15.9. The largest integer value storable is
999,999,999,999,999. The largest dollar value storable is 9,999,999,999,999.99

Double — no conversions, stored as double
Picture (FoxPro) Much like a memo field, but for images

Paradox 3.5 and later. Field type which could store 16-bit integers.



Chaprer I — Fundamentals 25

‘ Type ‘ Description
T DateTime (FoxPro)

Y Currency (FoxPro)

There was also a bizarre character name variable which could be up to 254 characters on
some platforms, but 64K under Foxbase and Clipper. I don' have a code for it, and I don' tare
about it.

Limits, Restrictions, and Gotchas

Our library of choice supports only L, F, C, N, D, P, and M without any numbers following.
Unless you force creation of a different file type, this library defaults to the dBASE III file format.
You should never ever use a dBASE II file format or, more importantly, a dBASE II product/tool
on a data file. There is a field on the file header which contains a date of last update/modification.
dBASE III and later products have no problems, but dBASE II ceased working some time around
Jan 1, 2001.

Most of today' dibraries and tools support dBASE III files. This means they support these
field and record limitations:

o dBASE II allowed up to 1000 bytes to be in each record. dBASE III allowed up to 4000 bytes
in each record. Clipper 5.0 allowed for 8192 bytes per record. Later dBASE versions allowed
up to 32767 bytes per record. Paradox allowed 10800 for indexed tables but 32750 for non-
indexed tables.

e dBASE III allowed up to 1,000,000,000 bytes in a file without ‘large disk support” enabled.
dBASE II allowed only 65,535 records. dBASE IV and later versions allowed files to be 2GB
in size, but also had a 2 billion record cap. At one point FoxPro had a 1,000,000,000 record
limit along with a 2GB file size limit. (Do the math and figure out just how big the records
could be.)

o dBASE III allowed up to 128 fields per record. dBASE IV increased that to 255. dBASE II
allowed only 32 fields per record. Clipper 5.0 allowed 1023 fields per record.

e dBASE IV had a maximum key size of 102 bytes. FoxPro allowed up to 240 bytes and
Clipper 388 bytes.

¢ Field/column names contain a maximum of 10 characters.



26 Chapfter [ - Fundamentals

I listed some of the non-dBASE III values to give you a sense of what you might be up
against when a friend calls you up and says ‘1' & got some data on an old xBASE file, can you
extract it for me?” The flavors of xXBASE which went well beyond even dBASE IV limitations
have very limited support in the OpenSource community.

Let me say this plainly for those who haven' figured it out: base is like Linux. There are a
zillion different flavors, no two of which are the same, yer, ajew core Hungs are conmmon, so ey
are all lumped 1ogether under one heading.

If you read through the comments in the source files, you' lbee that xBaseJ claims to support
only dBASE III and dBASE IV. If you are looking for transportability between many systems,
this is the least common denominator (LCD) and should work in most cases. The comments may
very well be out of date, though, because the createDBF() protected method of the DBF class
supports a format value called FOXPRO_WITH_MEMO.

When I did a lot of C/C++ programming on the PC platform, I found GDB (Greenleaf
Database Library) to be the most robust library available. I had used CodeBase from Sequiter
Software and found it to be dramatically lacking. With the C version of their library, you could
not develop an application which handled dBASE, FoxPro, and Clipper files simultaneously.
Their entire object library was compiled for a single format at a time. GDB created separate
classes and separate functions to handle opening/creating all of the database formats it supported.
Each of those root classes/structures were tasked with keeping track of and enforcing the various
limits each file type imposed. The library was also tested under Windows, Win-32, generic DOS,
16-bit DOS, 32-bit DOS, and OS/2. It was the cream of the crop and very well may still be today.

I' nbringing up those commercial libraries to make a point here. After reading through the
code, I have come to the conclusion that only the format was implemented by xBaseJ, not all of
the rules. When you read the source for the DBF class, you will see that if we are using a dBASE
III format, a field count of 128 is enforced, and everything else is limited to 255. The truth is that
the original DOS-based Foxbase had a field limit of 128 as well, but that format isn' directly
supported.

There is also no check for maximum record length. The DBF class has a protected short
variable named Irecl where it keeps track of the record length, but there are no tests that I could
see implementing the various maximum record lengths. In truth, since it supports only a subset of
the formats, a hard-coded test checking against 4000 would work well enough. Not a lot of DOS
users out there with legitimate dBASE III Plus run-times to worry about.



Chapter [ — Fundamentals 27

Another gotcha to watch out for is maximum records. The DBF class contains this line of
code:

file.writeInt (Util.x86 (count));

All the Util.x86 call does is return a 4-byte buffer containing a binary representation of a long
in the format used by an x86 CPU. (Java has its own internal representation for binary data which
may or may not match the current CPU representation.) The variable ‘file” is simply an instance
of the Java RandomAccessFile class, and writelnt() is a method of that class. There is no
surrounding check to ensure we haven' texceeded a maximum record count for one of the
architectures. Our variable count happens to be a Java int which is 32-bits. We know from our C
programming days (or at least the C header file limits.h) the following things:

Zype 16-bir 32-bir
unsigned 65,535 4,294,967,295
signed 32,767 2,147,483,647

While we will not have much trouble when handing data over to the other OpenSource tools
which don' ¢heck maximums, we could have trouble if we added a lot of records to a file flagged
as dBASE III then handed it off to an actual dBASE III run-time. Record maximums weren' as
big a problem as file size. That funky 1 billion byte file size limit was a result of DOS and the
drive technology of the day. We had a 1Gig wall for a while. Even after that barrier had been
pushed back to 8Gig we still had that built-in 1Gig limit due in large part to 16-bit math and the
FAT-16 disk structure used at the time. Most of you now use disk storage formats like FAT-32,
NTFS, HPFS, EXT3, or EXT4. None of these newer formats have the 16-bit problems we had in
days gone by. (For what it is worth, DOS floppy format still uses FAT-16.)

1 disk block = 512 bytes

1K = 1024 bytes or 2 blocks

1Meg = 1K squared or 1024 2 block units

1GB = 1K cubed or 1024 bytes * 1024 * 1024 = 1,073,741,824

1GB /512 =2,097,152 disk blocks

2GB =2 * 1GB =2,147,483,648 (notice 1 greater than max signed 32-bit value)
2GB /512 = 4,194,304 disk blocks

4GB =4 * 1GB =4,294,967,296 (notice 1 greater than max unsigned 32-bit value)
4GB /512 = 8,388,608 disk blocks

32767 * 512 = 16,776,704

16Meg = 16 * 1024 * 1024 = 16,777,216



28 Chapfter [ - Fundamentals

Large disk support, sometimes referred to as ‘large file support” got its name from the DOS
FDISK command. Whenever you tried to use the FDISK command after Windows 95 OSR2
came out on a disk larger than 512MB, it would ask you if you wanted to enable large disk
support. What that really did was switch from FAT16 to FAT32. Under FAT32 you could have
files which were up to 4GB in size and a partition 2TB in size. I provided the calculations above
so you would have some idea as to where the various limits came from.

Today xBASE has a 2Gig file size limit. As long as xBASE remains 32-bit and doesn' t
calculate the size with an unsigned long, that limit will stand. I told you before that xBASE is a
relative file format with records ‘tontiguously” placed. When you want to load record 33, the
library or xBASE engine takes the start of data offset value from the file header, then adds to it
the record number minus one times the record size to obtain the offset where your record starts.
Record numbers start at one, not zero. Some C/C++ libraries use the exact same method for
writing changes to the data file as they do for writing new records. If the record number provided
is zero, they write a new record; otherwise they replace an existing record.

In case the previous paragraph didn' tmake it obvious to you, data records are fixed length.
Do not confuse entries in a memo file with data records. You can' treate an index on a memo
file, or really do much more than read or write to it.

Various file and record locking schemas have been used throughout the years by the various
xBASE flavors. During the dark days of DOS, a thing called SHARE.EXE came with the
operating system. It never worked right.

SHARE could lock chunks of files. This led to products like MS Access claiming to be
multi-user when they weren' t.It also lead to the infamous ‘Two User Boof” bug. Access (and
several other database products at the time) decided to organize the internal database structure
around arbitrary page sizes. A page was basically some number of 512 byte blocks. It was
common to see page sizes of 8196 bytes, which was 16 blocks. SHARE would then be instructed
to lock a page of the database file. A page actually contained many records. If two users
attempted to modify different records on the same page, the second user' sipdate would dutifully
be blocked until the first user' sipdate was written to disk. IO was performed a page at a time in
order to increase overall efficiency. The update logic would dutifully check the contents of the
modified record on disk to ensure nobody else had changed it before applying the updates. What
the 1O process didn' to was check every damned record in the page for changes. The last one in
won. All changes made by the first user were lost. Some developers ended up making a record
equal to a page as a cheap hack-type work around. A lot of disk was wasted when this was done.



Chaprer I — Fundamentals 29

Summary

Despite all of its limitations and faults, the xBASE data storage method was groundbreaking
when it hit the market. Without some form of indexed file system, the PC would not have caught
on.

It is important for both users and developers to understand the limitations of any chosen
storage method before developing an application or systems around that method. While a
relational database is much more robust from a data storage standpoint, it requires a lot more
investment and overhead. Even a ‘free” relational database requires someone to install and
configure it before an application can be written using it. A developer can use a C/C++/Java/etc.
library and create a single executable file which requires no configuration, simply an empty
directory to place it in. That program can create all of the files it needs then allow a user to store
and access data in a meaningful fashion without them having any significant computer skills.

There will always be a role for stand-alone indexed file systems. Both commercial and
OpenSource vendors need data storage methods which require no user computer skills. Just how
many copies of Quicken do you think would have ever sold if a user had to download+install
+configure a MySQL database before Quicken would install and let them track their expenses?
No matter how old the technology is, the need for it still exists.

Review Questions

How many fields did dBASE III allow to be in a record?
What general computing term defines the type of file an xBASE DBF really is?
What does xBASE mean today?
What was the non-commercial predecessor to all xBASE products?
In terms of the PC and DOS, where did the 64K object/variable size limit really come from?
What company sold the first commercial xBASE product?
Is there an ANSI xBASE standard? Why?
What is the maximum file size for a DBF file? Why?
What was the maximum number of bytes dBASE III allowed in a record? dBASE II?
. What form/type of data was stored in the original xBASE DBF file?
. Can you store variable length records in a DBF file?
. Does an xBASE library automatically update all NDX files?
. What is the accepted maximum precision for a Numeric field?

e o o

— = = e e
AW NN = O

. What is the maximum length of a field or column name?



30

Page left blank intentionally.

Chapter 7 - Fundamentals



Chapter 1

Fundamentals

1.1 Our Environment

I am writing the bulk of this code on a desktop PC running the 32-bit Karmic Koala pre-
release of KUbuntu. I have Sun Java 6 installed on this machine, but several earlier releases of
Java should work just fine with this library.

After unzipping the download file, I copied the JAR files into a working directory. Of
course, the newer Java environments will only look for class files locally, not JAR files, so you
need to create a CLASSPATH environment variable. I use the following command file since it
loads just about everything I could want into CLASSPATH:

envl

1) #! /bin/bash

2) #set -v

3) #sudo update-java-alternatives -s java—-6-sun

4)

5) export JAVA_HOME='/usr/lib/jvm/java-6-sun'

6)

7) set_cp () {

8) local curr_dir=$(echo *.jar | sed 's/ /:/g')':"

9) local jvm_home_jars=$(echo $JAVA_HOME/*.jar | sed 's/ /:/g"')':'
10) local shr_jars=$(echo /usr/share/java/*.jar | sed 's/ /:/g')':"
11) 1local loc_jars=$(echo /usr/local/share/java/*.jar | sed 's/ /:/g')':"
12) 1if [ "$curr_dir" == "*.jar" ]; then

13) unset curr_dir

14) fi;

15) export CLASSPATH=S (echo .:$curr_dir$jvm_home_jarsS$Sshr_jars$loc_jars)
16) }

17)

18) ecp() {

19) echo S$CLASSPATH | sed 's/:/\n/g'

20) }

21)

22) # set class path by default

23) set_cp

24)

25) #set +v

roland@logikaldesktop:~$ cd fuelsurcharge2
roland@logikaldesktop:~/fuelsurcharge2$ echo $CLASSPATH

roland@logikaldesktop:~/fuelsurcharge2$ source ./envl
roland@logikaldesktop:~/fuelsurcharge2$ echo $CLASSPATH
.:commons—-logging-1.1.1.jar:junit.jar:xBased.jar:xercesImpl.jar:/usr/lib/jvm/
java-6-sun/*.Jjar:/usr/share/java/hsqldb-1.8.0.10.jar:/usr/share/java/hsgldb. jar:/
usr/share/java/hsqgldbutil-1.8.0.10.jar:/usr/share/java/hsgldbutil. jar:/usr/share/
java/ItzamJava-2.1.1.jar:/usr/share/java/jsp-api-2.0.jar:/usr/share/java/jsp-
api.jar:/usr/share/java/LatestVersion. jar:/usr/share/java/libintl. jar:/usr/share/
java/mysql-5.1.6.jar:/usr/share/java/mysgl-connector-java-5.1.6.7jar:/usr/share/
java/mysgl-connector-java.jar:/usr/share/Jjava/mysql. jar:/usr/share/java/
QuickNotepad. jar:/usr/share/java/servlet—-api-2.4.jar:/usr/share/java/servliet—
api.jar:/usr/local/share/java/*.jar:



32 Chapter [ - Fundamentals

As you can see, that script finds every JAR file and adds it to my environment variable. The

tE)

occasional ‘“* jar” value in the symbol definition doesn' appear to impact the JVM when it goes
searching for classes. If you don' have the JAR files specifically listed in your CLASSPATH
variable, then you will see something like this the first time you try to compile:

roland@logikaldesktop:~/fuelsurcharge2$ javac examplel.java
examplel.java:3: package org.xBaseJ does not exist
import org.xBaseJ.*;

examplel.java:4: package org.xBaseJ.fields does not exist
import org.xBaseJ.fields.*;

examplel.java:5: package org.xBaseJ.Util does not exist
import org.xBaseJ.Util.*;

examplel.java:18: cannot find symbol
symbol : variable Util
location: class examplel
Util.setxBaseJProperty ("fieldFilledWithSpaces", "true");
Windows users will need to view the information provided by Sun on how to set the

CLASSPATH variable.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/classpath.html

You may also wish to look at this message thread:

http://www.computing.net/answers/programming/how-to-set-java-classpath-in-vista/15739.html

1.2 Open or Create?

You will find quite a few examples of various xBASE programming languages/tools on the
Web. Examples are a little scarce for xBaseJ, as is documentation, hence, the creation of this
book. Most of the examples piss me off. I understand that they are trying to show the simplest of
things to a user who may have no other computer knowledge, but those well-meaning examples
show a user how to do things badly, and that is exactly how they will continue to do them.

The main Web site for xBasel] has two examples which, while well meaning, fall into this
category: examplel.java and example2.java. The first creates a database, the second opens it.
While you can argue that the create always wanted to create, just having the open example crash
out when the file is missing is probably not what you want when developing an application which
will be sent out into the universe. Most of you don' even think about why some applications take
so long to start up the very first time you run them. The startup code for those applications is very
graciously running around checking for all of the necessary data files. When files are missing, it
creates default ones. Just how many of you would use a word processor if it required you to run
some special (probably undocumented) program before it would do anything other than crash out?


http://www.computing.net/answers/programming/how-to-set-java-classpath-in-vista/15739.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/classpath.html

Chaprer I — Fundamentals 33

When I imbibe enough caffeine and think about it, the real problem is the constructor using a
Boolean for the ‘destroy” parameter. A Boolean gives you only True and False. A production
class system needs three options:

1. Use existing
2. Overwrite
3. Create if missing
If you have read some of my other books you will know that many languages name this type

EL)

of parameter or attribute ‘disposition” or ‘file disposition.” The DBF constructor doesn' have a

‘file disposition” attribute, so we have some less-than-great examples floating around.

I' mnot going to discuss Java much in this book. I will point out oddities as I see them, but if
you are looking for a Java tutorial, there are many of those on the Web. I' veven written a book
on Java which some people like. (“The Minimum You Need to Know About Java on OpenVMS
Volume 1”7 ISBN-13 978-0-9770866-1-0) I' mm veteran software developer, but not a tenured
Java developer. A few discussions of oddities aside, we are really focusing on how to use xBase]
with Java in this book.

There are very few classes of applications which always need to create an indexed file when
they run. Most business systems use the disposition of ‘Create if missing.” Many will display
some kind of message stating they are creating a missing indexed file, just in case it wasn' t
supposed to be missing, but in general, only extract-type applications always need to create when
it comes to indexed files.

In case you do not understand the phrase ‘extract-type applications,” these are applications
which are run against large data sets that pull out copies of records/rows which meet certain
criteria and place these copies in a file. The file is known as an extract file and the application
which creates it an extract application.



34 Chapter [ - Fundamentals

1.3 Example 1

examplel.java is representative of the first example program floating around on the Web at
the time of this writing. Note that some older examples don' show the proper import statements.
You need to include the full path as I have done with listing lines 3 through 5.

examplel.java

1) import java.io.*;

2) import java.util.*;

3) import org.xBaseJ.*;

4) import org.xBaseJ.fields.*;

5) import org.xBaseJ.Util.*;

6

7) public class examplel {

8)

9

10 public static void main(String args([]) {

11

12

13 try{

14 //

15 // You must set this unless you want NULL bytes padding out
16 // character fields.

17 //

18 Util.setxBaseJProperty ("fieldFilledWithSpaces", "true");
19

20 //Create a new dbf file

21 DBF aDB=new DBF ("class.dbf",true);

22

23 //Create the fields

24 CharField classId = new CharField("classId",9);

25 CharField className = new CharField("className",25);

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
26) CharField teacherId = new CharField("teacherId", 9);
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

27 CharField daysMeet = new CharField("daysMeet",7);

28 CharField timeMeet =new CharField("timeMeet",4);

29 NumField credits = new NumField("credits",2, 0);

30 LogicalField UnderGrad = new LogicalField("UnderGrad");

31

32

33 //Add field definitions to database

34 aDB.addField(classId);

35 aDB.addField (className) ;

36 aDB.addField (teacherId);

37 aDB.addField (daysMeet) ;

38 aDB.addField (timeMeet) ;

39 aDB.addField (credits) ;

40 aDB.addField (UnderGrad) ;

41

42 aDB.createIndex ("classId.ndx", "classId", true, true); // true -
delete ndx, true - unique index,

43) aDB.createIndex ("TchrClass.ndx", "teacherID+classId", true, false);
//true - delete NDX, false - unique index,

44 System.out.println("index created");

45

46 classId.put ("JAVAI0100");

47 className.put ("Introduction to JAVA");

)
)
)
)
48) teacherId.put ("120120120");
)
)
)

49 daysMeet .put ("NYNYNYN") ;
50 timeMeet.put ("0800");
51 credits.put (3);



Chaprer I — Fundamentals 35

52) UnderGrad.put (true) ;

53)

54) aDB.write () ;

55)

56) classId.put ("JAVAL10200");
57) className.put ("Intermediate JAVA");
58) teacherId.put ("300020000");
59) daysMeet .put ("NYNYNYN") ;
60) timeMeet.put ("0930");

61) credits.put (3);

62) UnderGrad.put (true);

63)

64) aDB.write () ;

65)

66) classId.put ("JAVA501");

67) className.put ("JAVA And Abstract Algebra");
68) teacherId.put ("120120120");
69) daysMeet .put ("NNYNYNN") ;
70) timeMeet.put ("0930");

71) credits.put (6);

72) UnderGrad.put (false);

73)

74) aDB.write () ;

75)

76)

77) }catch (Exception e) {

78) e.printStackTrace();

79) }

80) }

81) }

roland@logikaldesktop:~/fuelsurcharge2$ javac examplel.java
roland@logikaldesktop:~/fuelsurcharge2$ java examplel
index created
roland@logikaldesktop:~/fuelsurcharge2$

Listing line 18 contains a very important property setting. By default, xBaseJ pads string
fields with NULL bytes when writing to disk. While there was a time when this was done, most
xBASE environments did away with that practice. As more and more tools became able to open

raw data files, it became necessary to supply spaces. Please conduct the following test:

Compile and run this program as I have done.
Use OpenOffice to open class.dbf in a spreadsheet. Look closely at the data.
Comment out listing line 18; compile and re-run this program.

b=

Use OpenOffice to open class.dbf in a spreadsheet. Look closely at the data.

What you will notice is that the first spreadsheet had some funky looking zero characters in
the text columns. Those characters were the null bytes padding out the character fields. The
second version of the file opened more as you expected. It should look much like the following:



36 Chapfter [ - Fundamentals

= () class.dbf - OpenOffice.org Cale ——— ~ @ o
File Edit Wiew Insert Format Tools Data Window Help b 4
Sl | S ] L [ L P e SE A F4 &
L — H - j s % :‘E 3 B Hy | r ey | 7 B 24 @t
"‘. Arial v 10 v B @ W= =y —= 3] %) 000 oo =4 &
= JHE=
A | B | c | D | E | F e " A
1 |CLASSID,C 9 CLASSNAME C,25 TEACHERID,C 9 DAYSMEET,.C,7 | TIMEMrCREFUNDERGRAD L
2 |JAVA10100 Introduction to JAW 120120120 MY INYINY N 0s00 ) TRUE ‘
3 MJAVAI0200 Intermediate JAVA 300020000 NYNY YN 0930 | 3 TRUE L
4 [JAVAS0 JAVA And Abstract 120120120 MNMYRY MM 0930 (&) FALSE
[
7 A
8 ' ' | | 1 &
- . Sheet1 / [<! <]

Please note column F on the spreadsheet. Even though the numeric database column was
declared to have two digits, we don' fget a leading zero. Column E (TIME) may seem a bit
deceiving at first. This wasn' tdeclared as a numeric database column; it was declared as a
character so the leading zero could be forced. Listing line 29 is where CREDITS (column F) is
declared, and listing line 28 declares TIMEMEET (column E). Please note that numeric field
declarations have two numeric parameters. The first is the size of the field including the
punctuation characters, and the second is the number of decimal places.

Listing line 21 is where the initial empty database file is created. The Boolean value ‘true” as
the final parameter forces file creation.

Once you create a field, it has to be added to the database before it becomes a column in the
database. We do this at listing lines 34 through 40.

An indexed data file isn' tmuch use unless it has at least one index. Two index files are
created at listing lines 42 and 43. The first Boolean value passed into these methods controls
deletion of existing files. The second value controls whether the index is a unique key or not. A
unique key will allow only one instance of a value to be stored as a key for only one record. A
non-unique key will allow the same key value to point to multiple records. You cannot guarantee
what order records will be retrieved for records having the same key value. If someone rebuilds
the index file, or adds other records in that range, or packs the database, the retrieval order can
change. Just because the record for ‘FRED SMITH” came out first in this department report run
doesn' t mean it will come out first next time.



Chaprer I — Fundamentals 37

Note: xBASE files do not physically delete records. They flag records as being deleted. The
only way to reclaim the wasted space is to create a new version of the database file with a function
known as PACK. One of two things would happen depending upon the tool involved:

1. The data file would be walked through sequentially and records not flagged as deleted would
be ‘shuffled up,” replacing deleted or newly emptied records.

2. A new version of the database would be created with a temporary name. This version would
contain only the non-deleted records from the original database. Upon completion the original
database would be deleted and the new one renamed.

The second approach was much more efficient, but required a lot of disk space. No matter
which approach was taken, all index files for the database had to be rebuilt. Until we had MDX
files, most libraries and dialects of xBASE had an option which would allow a developer to create
an index anew each time they opened the file. xbasel has the same option:

public NDX(String name,

String NDXString,

DBF indatabase,

boolean destroy,

boolean unique) throws xBaseJException, IOException

When you pass in a destroy flag of true, xBaseJ rebuilds the index based upon the records

currently in the database. Please note that if you do not PACK the database prior to creating a
new index, the new index will contain entries for deleted records. When you open an MDX tag,

the index is automatically rebuilt in place. We will discuss packing more later.

Please turn back to the screen shot showing this database in an OpenOffice spreadsheet and
really look at row one. When this example program was written the programmer used mixed case
column names because that looked very Java-like. (It actually looked very PASCALian, and
PASCAL is a dead language, so you do the math on that one.) Notice what actually got written to
the database, though: it is all upper case. I have found bugs over the years in various tools which
end up letting lower case slip into the header record. It is a good programming practice to always
use upper case inside of strings which will be used for column or index names. You will never be
burned by an upcase() bug if you always pass in upper case.

Take a really good look at listing line 43. That key is composed of two database columns
concatenated together. On page 17 of this book you were told that the original dBASE version
supported only character data. All ‘h umeric” values were stored in their character representations
to increase portability. This feature also made index creation work. We aren' adding two values
together with that syntax, we are concatenating two strings into one sort/key value.



38 Chapfter [ - Fundamentals

In truth, that “false” parameter at the end of listing line 43 is of little logical value. Yes, the
database will set the key up to allow for duplicate values, but they cannot happen. Listing line 42
has declared a unique key based upon the column CLASSID. If one portion of a string key is
required to be unique due to some other constraint, then all values in that key will be unique.

Listing lines 46 through 54 demonstrate how to assign values to the fields and finally write a
shiny new record to the database. Because we have the index files open and associated with the
data file, all of their keys will be updated. I must confess to being a bit disappointed at the choice
of put() as the method name for assigning field values. I would have expected assign() or set().
Depending upon when this method was written, though, put() might have been in vogue. There
was a dark period of time in the world of Java when an object itself was considered a data store,
and when it was thought that one should always ‘put” into a data store. The Java programmers
really just wanted to do something different than the C++ developers who were using setMyField
(), assignMyField(), etc. Of course, GDB used to have a function DBPutNamedStr() which wrote
a string value into the IO buffer for a named field, so maybe in hindsight I' m just picky.

That' st. The first example to force creation of a data file along with two index files. Three
records are written to the file, and we have verified this by opening the file with OpenOffice. One
thing I don' tike about this example is that it didn' bother to use the close() method of the DBF
object. While it is true that close() is called by the finalize() method which is called upon
destruction, it is always a good programming practice to close your files before exiting.



Chaprer I — Fundamentals 39

1.4 Exception Handling and Example 1

I will assume you are familiar enough with Java to know that statements which can throw an
exception traditionally get encapsulated in a try/catch block. Nearly every exception class you
will ever encounter is derived from the root Java Exception class. This allows every catch block
series to have an ultimate catch-all like the one you see at listing line 77. As far as error handling
goes, it doesn' tlo squat for the user. There is no recovery and they will have no idea what the
stack trace means.

The code in the try block is really where the train went off the rails. Yes, I understand the
intent was to show only the most straightforward method of creating a new xBASE file with an
index. The actual flow will get lost if each statement has its own localized try/catch block, but
you need to group things logically.

Those of you unfamiliar with object-oriented error handling won' tbe familiar with this
particular rant. Others may be tired of hearing it, but the newbies need to be educated. The move
to more modern languages meant a move away from line numbers and GOTO statements. While
this wasn' @ bad thing in general, it really waxed error handling. Most programmers didn' t
completely embrace the ‘localized error handler” methodology, and without line numbers and
RESUME statements the quality of error handling tanked. We have a good example of the typical
error handling quality I typically see with Java in this example. If any statement in the range of
listing lines 14 through 76 throws an exception, we land in the catch block without any idea of
which statement actually threw the exception. Even if we could identify exactly which line threw
the exception, we would have no method of getting back there. Java doesn' have a RETRY or
RESUME that would allow us to fix a problem then continue on.

Many people will try to characterize code like this as a programmer being lazy, and that
would be unfair. The authors here were trying to show how to do something without the error
handling getting in the way. The trouble is that most of these examples will be modified only
slightly by programmers new to the field, then distributed to others. They don' know any better,
and code like this will eventually creep into production systems.

If you want to be even more unfair you can also point out that catching the universal
Exception class as is done at listing line 77 is now listed as a bad/undesirable practice by Sun.
Lots of code currently in production does this. The problem with doing this is that you mask
really hard run-time errors (like a disk failure or bad RAM) which really shouldn' t be masked. Not
only is there nothing you can do about them in your program, the system manager needs to know
about them ASAP!



40 Chapfter [ - Fundamentals

Part of the desire for a clean and simple source listing came from the early days of
programming. Classically trained programmers learned structured analysis and design. More
importantly, the first language they learned was BASIC. Later versions of BASIC removed
nearly all line numbers from the language. This migration made the language nearly useless. The
move to localized error handling with WHEN ERROR IN ... USE ... END WHEN constructs
pretty much ruined the language for business use. It all came about because a lot of people trying
to learn the language either refused to keep either a printout by their side or two edit windows
open.

One of the very first executable lines you would find in most BASIC modules read as
follows:

99 ON ERROR GOTO 32000 ! 0ld style error handling

Other than checking a function return value, no other error handling existed in the source
until you got to BASIC line 32000.

32000 Yiigiiiiiii
! 0ld style error handling

rrrrrorroror

SELECT ERL
CASE = 910%
L_ERR% = ERR
PRINT "Unable to open input file"; drawing_data$
PRINT "Error: ";L_ERR%;" ";ERTS$( L_ERRY%)
RESUME 929

CASE = 912%
L_ERR% = ERR

PRINT "Unable to open report file "; rpt_files$
PRINT "Error: ";L_ERR%;" ";ERTS( L_ERR%)
RESUME 929

CASE = 930%

PRINT "Invalid input"
PRINT "Please re-—enter"
RESUME 930

CASE = 940%
L_ERR% = ERR

PRINT "Unable to retrieve record GE |";BEG_DATES;"|"
PRINT "Error: ";L_ERR%;" ";ERTS$( L_ERRS%)

RESUME 949

CASE = 942%

B_EOF% = 1%

IF ERR <> 11%
THEN
L_ERR% = ERR
PRINT "Unable to fetch next input record"
PRINT "Error: ";L_ERR%;" ";ERTS$( L_ERRS%)
END IF



Chapter [ — Fundamentals 41

RESUME 942
CASE ELSE
ON ERROR GOTO O
END SELECT
32767 ! End of module

PROGRAM_EXIT:

I' llbe the first to admit that this SELECT statement used to get out of hand. Some
programmers refused to use a SELECT so you had an ugly series of nested IF-THEN-ELSE
statements. It did, however, leave the logic flow clean and apparent (if you were a competent
programmer) and it allowed you to handle just about every error you could potentially recover
from. RESUME and RETRY allowed us to return program control to any line number or label in
the program. Some abused it, for certain, but the power and grace of this technology is lacking
from all OOP error handling today.

Everybody wants the clean look that BASIC with old style error handling had, so most Java
programs have no usable error handling.

1.5 rolliel.java

Quite simply, we are going to take examplel.java, fix a few things, then add some print
functionality. I must stress that this isn' & great example, but it is a very common design. I have
encountered this same design time and time again, no matter what language or xXBASE library was
being used.

rolliel.java

import java.io.*;

import java.util.*;

import org.xBaseJ.*;

import org.xBaseJ.fields.*;
import org.xBaseJ.Util.*;

J

public class rolliel {

// variables used by the class
) //
) private DBF aDB = null;
) private CharField classId = null;
) private CharField className = null;
) private CharField teacherId null;
) private CharField daysMeet = null;
) private CharField timeMeet = null;
17) private NumField credits = null;
)
)
)
)
)
)
)

HFRERRPREROOJOYU D WN
W R O— —— = — = —

18 private LogicalField UnderGrad = null;
19

20 private boolean continue_flg = true;
21

22 Iiiiiiiiiii

23 // Main module

24 [liiiiiiiiii



Chapfter [ - Fundamentals

public void do_it () {
try{
//
// You must set this unless you want NULL bytes padding out
// character fields.
//
Util.setxBaseJProperty ("fieldFilledWithSpaces", "true");

open_database () ; // use an existing database if possible

if (!continue_flg) {
continue_flg = true;
create_database(); // if none exists create
if (continue_flg)
add_rows () ;
} // end test for successful open of existing database

// You cannot Jjust blindly run the report.
// We could have tried to create a database on a full disk
// or encountered some other kind of error

if ( continue_flg) {
dump_records () ;
dump_records_by_primary () ;
dump_records_by_secondary () ;
aDB.close () ;

} // end test for open database

}catch (IOException 1) {
i.printStackTrace();
} // end catch

// end do_it

Iliiiiiiiiii
// method to add some rows
//

// Notice that I added the rows in reverse order so we could
// tell if the unique index worked

[iiiiiiiiii
private void add_rows () {
try {

classId.put ("JAVA501");

className.put ("JAVA And Abstract Algebra");
teacherId.put ("120120120");
daysMeet .put ("NNYNYNN") ;

timeMeet.put ("0930");

credits.put (6);

UnderGrad.put (false);

aDB.write () ;

classId.put ("JAVA10200");
className.put ("Intermediate JAVA");
teacherId.put ("300020000") ;
daysMeet .put ("NYNYNYN") ;
timeMeet .put ("0930");
credits.put (3);

UnderGrad.put (true);

aDB.write () ;



Chapter [ — Fundamentals

88)
89)
90)
91)
92)
93)
94)
95)
96)
97)
98)

99)

100)
101)
102)
103)
104)
105)
106)
107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)

118)

119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)
145)
146)
147)
148)

}

pr

delet

classId.put ("JAVA10100");
className.put ("Introduction to JAVA");
teacherId.put ("120120120");
daysMeet .put ("NYNYNYN") ;
timeMeet .put ("0800") ;

credits.put (3);

UnderGrad.put (true);

aDB.write () ;

} catch( xBaseJException j) {
j.printStackTrace();
continue_flg = false;

} // end catch xBaseJException

catch( IOException i) {
i.printStackTrace();

} // end catch IOException

// end add_rows method

RN

Method to create a shiny new database
AR RN
ivate void create_database () {
try {

//Create a new dbf file

aDB=new DBF ("class.dbf",true);

attach_fields (true);

aDB.createIndex ("classId.ndx","classId", true,true); //
e ndx, true - unique index,

aDB.createIndex ("TchrClass.ndx", "teacherID+classId", true,

//true — delete NDX, false - unique index,

System.out.println("created database and index files");

} catch( xBaseJException j) {
j.printStackTrace();
continue_flg = false;

} // end catch

catch( IOException i) {

i.printStackTrace();

} // end catch IOException

// end create_database method

Iliiiiiisiii
// Method to open an existing database and attach primary key
Iiiiiiiiiii
public void open_database () {
try {

}

//Create a new dbf file
aDB=new DBF ("class.dbf");

attach_fields( false);

aDB.uselIndex ("classId.ndx");
System.out.println ("opened database and primary index");
} catch( xBaseJException 7j) {
continue_flg = false;
} // end catch
catch( IOException i) {
continue_flg = false;
} // end catch IOException
// end open_database method

43

true -

false);



44 Chapter [ - Fundamentals

149)

150) Iliiiiiiiiii

151) // Method to populate known class level field objects.
152) // This was split out into its own method so it could be used
153) // by either the open or the create.

154) /liiiiiiiiii

155) private void attach_fields( boolean created_flg) {

156) try {

157) if ( created_flg) {

158) //Create the fields

159) classId = new CharField("classId",9);

160) className = new CharField("className", 25);

161) teacherId = new CharField("teacherId", 9);

162) daysMeet = new CharField("daysMeet",7);

163) timeMeet = new CharField("timeMeet",4);

164) credits = new NumField("credits",2, 0);

165) UnderGrad = new LogicalField("UnderGrad");

166)

167) //Add field definitions to database

168) aDB.addField(classId);

169) aDB.addField (className) ;

170) aDB.addField (teacherId);

171) aDB.addField (daysMeet) ;

172) aDB.addField (timeMeet) ;

173) aDB.addField (credits) ;

174) aDB.addField (UnderGrad) ;

175)

176) } else {

177) classId (CharField) aDB.getField("classId");
178) className = (CharField) aDB.getField("className");
179) teacherId = (CharField) aDB.getField("teacherId");
180) daysMeet = (CharField) aDB.getField("daysMeet");
181) timeMeet = (CharField) aDB.getField("timeMeet");
182) credits = (NumField) aDB.getField("credits");
183) UnderGrad = (LogicalField) aDB.getField("UnderGrad");
184) }

185)

186)

187) } catch ( xBaseJException j) {

188) j.printStackTrace();

189) }// end catch

190) catch( IOException i) {

191) i.printStackTrace();

192) }// end catch IOException

193) } // end attach_fields method

194)

195) Iiiiiiiiiii

196) // Method to test private flag

197) Iliiiiiisiii

198) public boolean ok_to_continue () {

199) return continue_flg;

200) }// end ok_to_continue method

201)

202) /liiiiiiiiii

203) // Method to dump records by record number

204) [liiiiiiiiii

205) public void dump_records () {

206) System.out.println( "\n\nRecords in the order they were entered\n");
207) System.out.println( "classId className "o+
208) "teacherId daysMeet time cr UnderGrad");

209)

210) for (int x=1; x <= aDB.getRecordCount (); x++) {

211) try {



Chapter [ — Fundamentals

212)
213)
214)
215)
216)
217)
218)
219)
220)
221)
222)
223)
224)
225)
226)
227)
228)
229)
230)
231)
232)
233)
234)
235)
236)
237)
238)
239)
240)
241)
242)
243)
244)
245)
246)
247)
248)
249)
250)
251)
252)
253)
254)
255)
256)
257)
258)
259)
260)
261)
262)
263)
264)
265)
266)
267)
268)
269)
270)
271)
272)
273)
274)

}

public void dump_records_by_primary ()
"\n\nRecords in primary key order\n");

}

aDB.gotoRecord( x);
}

catch ( xBaseJException 7Jj) {
j.printStackTrace();

} // end catch IOException

catch( IOException i) {
i.printStackTrace();

} // end catch IOException

System.out.println( classId.get ()

n n

+ teacherId.get ()
timeMeet.get () + "
UnderGrad.get ());

} // end for x loop

// end dump_records method

System.out.println(

System.out.println( "classId

+ " " + className.get ()
+ " " + daysMeet.get() + " "
" + credits.get () + " " +

{

className "o+

"teacherId daysMeet time cr UnderGrad");
try {

aDB.uselIndex ("classId.ndx");

continue_flg = true;

aDB.startTop () ;

while( continue_flg) {

aDB. findNext () ;

System.out.println( classId.get() + " " +
className.get () + "
teacherId.get () + "
daysMeet .get ( "o+

) + "
timeMeet.get () +
credits.get () + "
UnderGrad.get ());

} // end while loop

catch( xBaseJException Jj) {
continue_flg = false;

catch( IOException 1) {
continue_flg = false;

}

n

+

// end dump_records_by_primary method

public void dump_records_by_secondary () {

System.out.println(
System.out.println( "classId
"teacherId daysMeet

try {

time

cr

aDB.uselIndex ("TchrClass.ndx");

continue_flg = true;

"\n\nRecords in secondary key order\n");

className "o+

UnderGrad") ;

+

+



46 Chapfter [ - Fundamentals

275) aDB.startTop () ;

276)

277) while( continue_flg) {

278) aDB. findNext () ;

279)

280) System.out.println( classId.get() + " " +
281) className.get () + " "o+
282) teacherId.get () + " " +
283) daysMeet.get () + " " +
284) timeMeet.get () + " " +
285) credits.get () + " " +
286) UnderGrad.get ());

287)

288) }// end while loop

289) }

290) catch( xBaseJException Jj) {

291) continue_flg = false;

292) }

293) catch( IOException i) {

294) continue_flg = false;

295) }

296)

297) }// end dump_records_by_secondary method

298) } // end class rolliel

The first thing you will notice about this example is that I ripped out the main() method. Most
people writing Java examples try to get by with a single source file example, even when they are
using a complex library or database system. I' nmowhere near ‘One With the Object” level of
OOP with this design, but it is typical of things you will encounter in the field.

This design works when you have created a single file database which is to be used by one
and only one application. This design fails as soon as you need to use that same database in
another application. When you enter a shop that had a programmer who liked this design, you
will usually be entering g/7e7 that programmer has left (or was asked to leave). When you need to
add additional functionality you either have to cut and paste large chunks of code out of this class
into a new one, or you watch this class grow to be hundreds of thousands of lines of source.

One of the many things I don' tlike about Java is its lack of header files. Most Java
developers end up using some kind of IDE like Eclipse, not because it' s ®ood editor, but because
it has built-in Java-specific functionality which will create views of all the methods and members
in a class if you load the correct plug-in. In C++ we had header files in which the class was
prototyped and you could easily see all of its methods and members. This source file is just shy of
300 lines in length, and if I didn' tprefix my methods with a comment containing ten ‘5’
characters you would have trouble locating them. Imagine what it is like when the listing is

12,000 lines long.



Chapter [ — Fundamentals 47

All instances of the database and column names are moved out to the class level in this class.
Doing so allows them to be shared by all methods in the class. I flagged them as private so others
couldn' t touch them from outside the class.

Listing line 25 is where the public method do_it() begins. This is really the whole
application. The flow would be a little bit easier to read if we didn' have to keep checking the
continue_flg variable, or if Java allowed statement modifiers like DEC BASIC did:

GOSUB C2000_PAGE_HEADING IF LINE_CNT% >= page_size$%

A lot of people complained about statement modifiers, but those people never wrote
production systems. Eventually, BASIC became the only surviving commercial language to have
this syntax. The flow of this particular method would clean up considerably if we could use such
syntax.

Even with the cumbersome if statements, you should be able to ascertain the flow of the
method. First we try to use an existing database. If that fails, we create the database. If database
creation was successful, we add some data to the database. Once we have successfully established
a database, we report off the data in three different sort orders, close the database, and exit.

Please take notice of listing lines 67, 78, and 88. These lines assign the primary key values to
each row that we will be adding. What you need to notice is that I stored these records in
descending order by primary key. Having data which was added in a known sort order is critical
to understanding whether our reports worked correctly or not.

Both create_database() and open_database() call a method named attach_fields(). We have
very little to discuss in the create_database() method since much of the code was stolen from
examplel.java. You will notice that in open_database() we don' provide the ‘true” parameter to
the DBF constructor. It is this parameter which tells the DBF constructor whether to use an
existing database or create a new one.

Notice at listing line 140 that we don' treate an index, but rather use the existing index file.
Using an existing index file can be an incredibly dangerous thing to do when working with
xBASE files. Attempting to create a shiny new index file using the same hard-coded name as last
time can also be a dangerous thing as another user may have the file opened, which means your
process will fail. During the dark days of DOS it was almost impossible to generate a unique file
name every time. The 8.3 naming schema was pretty restrictive. Not many of your disk
partitions will be FAT16 these days, though. FAT32 came onto the scene in 1996 with Windows
95 OSR2. Floppy disk drives will still use FAT16, but most of the ‘super floppy” disks (120 and
240Meg) will use FAT32 or something else, which allows for very long file names.



48 Chapfter [ - Fundamentals

In the DOS days, most xBASE libraries didn' have a reindex() function. They were all busy
trying to be multi-user and there simply wasn' & good multi-user method of rebuilding an index
while other users had the file open. (There really isn' ven today.) We also didn' thave a
universal temporary directory. There were some environment variables you could hope were set
(TMP, TEMP, etc.), but all in all, you were on your own.

Few things would cause more problems in XBASE software than one programmer forgetting
to open the ‘produc tion” index when they added records to the database. Any application which
used the production index to access records would simply skip processing any records in the
database which didn' t have an index.

In a feat of purely defensive coding, most programmers would take a stab at generating a
unique file name for the index, then create the needed index after they opened the database. When
you had thousands of records on those old and slow 40Meg hard drives, it could take minutes for
the first screen to load, but at least you knew you were processing all of the data...or did you?
Nobody else knew about your shiny new indexed file. This means they weren' bothering to
update any entries in it while they were adding records to the database. The lack of a common
OS-enforced temporary directory led to a lot of policies and procedures concerning what files to
delete when. More than one shop blew away their production index while trying to delete
temporary index files to free up space.

Some shops learned to live with and work around the pitfalls. They put policies and
procedures in place so users didn' have to wait entire minutes for the first application screen to
display data. The world of xBASE eventually created the MDX file in an attempt to solve these
issues. We will discuss the MDX file in a later example.

Listing lines 159 through 183 show a bit of difference between creating a new file and using
an existing file. When the database is shiny and new, you must create the column objects, then
add them to the database object. The act of adding them to the object actually creates the columns
in the database. When you are using an existing database you must pull the field definitions out of
the database object. If you create field definitions and attempt to add them, they will be new
columns, unless they have a matching column name already in the database, then an exception
will be thrown.

One thing I would have liked to seen in the library was a series of ‘get” methods, one for
each supported data type. This would move any casting inside of a class method. Many of the C/
C++ libraries I used over the years had this functionality to keep code as cast-free as possible. It
would be nice to call a method named aDB.getCharField(‘classld”) and have it either return a
CharField object or throw an exception. Of course, it would also be nice if the exception could



Chaprer I — Fundamentals 49

have actual error codes which told you what the exception was, not just that it happened to have
died.

The dump_records() method starting on listing line 205 doesn' have much complexity to it. I
use a simple for loop to read from 1 to the maximum number of records in the database, printing
each record out. The method getRecordCount() returns the current record count in the database.

The method gotoRecord() physically reads that record number from the database. You may
recall that I told you xBASE is a relative file format. All relative file formats are actually
accessed by record number. The index files are really storing a key value and corresponding
record number in a Btree (binary tree) fashion. This method walks through the records as #z¢y
were written o the data file without paying any attention to key values.

At listing line 239, I show you how to clear the ‘c urrent record” value stored internally in the
class. The method startTop() will set the current record value to zero and move the index pointer
back to the root of the currently active index.

Most of you would have tried to use read() instead of findNext() at listing line 241. T will
admit that once I read the comments in the source file, I gave it a whirl as well. It behaved the
way I thought it would. Any of you who have read ‘The Minimum You Need to Know to Be an
OpenVMS Application Developer” ISBN-13 978-0-9770866-0-3 would have expected it to not
work as well. There is a problem with most ‘read” and ‘readNext” type functions in most
languages. You must first establish a key of reference via some other 10 operation before an
ordinary read or readNext type function will work. Find and findNext type methods are almost
always set up to find a key value ‘equal to or greater than” the value they currently have in some
designated key buffer. If that buffer is null, they tend to find the first record in the file via the
currently active index.

Please note: The technique I' veshown you here will work with xBaseJ and its dBASE
implementations. findNext() does not look at a key value, only the position of the index tree
being traversed in memory. find() actually attempts to locate a value based on key. Some
libraries have stored some numeric keys as binary integers. On most platforms an integer zero is
a null value in binary integer form. This null value is greater than a negative value due to the way
the sign bit is treated. You get lucky with many IEEE standards since there is usually at least one
bit set to indicate the numeric base or some other aspect.

Our method dump_records_by_primary() has to specify the primary to control sort order. If
you rely on some other logic path to set the key, then your sort order might appear random. Other
than the heading and the changing of the index there really is no difference between
dump_records_by_secondary() and dump_records_by_primary().



50 Chapfter [ - Fundamentals

Notice in each of the report methods that we have to call the get() method for each field in
order to obtain its value. We do not have direct access to the data values in this library. Some
others allow for direct retrieval and some don' t. I don' treally have a preference these days.
During my DOS programming days I always wanted to use C libraries, which allowed direct
access to the values. This wasn' because I was an Uber geek trying to be one with the CPU, but
because of the wonderful 640K memory limitation of the day. If I allocated the storage for the
returned values, I could put it in an EMS page which could be swapped out on demand. Most
vendors of third-party libraries refused to provide any support if you were swapping their code in
and out of the lower 640K via an overlay linker.

Compiling and running this thing isn' @ big challenge, assuming you' vealready got your
CLASSPATH environment variable set.

roland@logikaldesktop:~/fuelsurcharge2$ rm class.dbf
roland@logikaldesktop:~/fuelsurcharge2$ rm teacher.dbf
roland@logikaldesktop:~/fuelsurcharge2$ java testRolliel
created database and index files

Records in the order they were entered

classId className teacherId daysMeet time cr UnderGrad
JAVAS501 JAVA And Abstract Algebra 120120120 NNYNYNN 0930 6 F
JAVA10200 Intermediate JAVA 300020000 NYNYNYN 0930 3 T
JAVA10100 Introduction to JAVA 120120120 NYNYNYN 0800 3 T

Records in primary key order

classId className teacherId daysMeet time cr UnderGrad
JAVA10100 Introduction to JAVA 120120120 NYNYNYN 0800 3 T
JAVA10200 Intermediate JAVA 300020000 NYNYNYN 0930 3 T

JAVA501 JAVA And Abstract Algebra 120120120 NNYNYNN 0930 6 F

Records in secondary key order

classId className teacherId daysMeet time «cr UnderGrad
JAVA10100 Introduction to JAVA 120120120 NYNYNYN 0800 3 T

JAVAS501 JAVA And Abstract Algebra 120120120 NNYNYNN 0930 6 F
JAVA10200 Intermediate JAVA 300020000 NYNYNYN 0930 3 T

I deleted the existing data file and index by hand so you could see the result of a first run
situation. You will also want to do this if you have compiled and run the examplel.java program.
This particular set of test data is re-ordered. If you run it against the original data file, you won' t
see any differences between the first and the second report.

Just to be complete, let me show you the simple little test source.



Chaprer I — Fundamentals 51

testRolliel.java
1) public class testRolliel {

2)

3) public static void main (String args([]) {
4) rolliel r = new rolliel();

5)

6) r.do_it ();

7)

8) } // end main method

9)

10) } // end class testRolliel

1.6 Programming Assignment 1

Modify rolliel.java to remove the opening of the primary key file when opening the existing
database. Replace dump_records_by_primary() and dump_records_by_secondary() with one
method dump_records_by_key() which accepts a String parameter that is the index file name.
Compile and run your program. Test it with both a valid file name and a nonexistent file name.

1.7 Size Matters

I know, that section heading makes it sound like I' ngoing to be selling gym equipment or
male enhancement tablets, but it really is true with xBasel: size really does matter. It is your job
to ensure your application doesn' toverrun a numeric field. Character fields will throw an
exception, but numeric fields will not.

exampleS.java

1) import java.io.*;

2) import java.util.*;

3) import org.xBaseJ.*;

4) import org.xBaseJ.fields.*;

5) import org.xBaseJ.Util.*;

6)

7) public class example5 {

8)

9)

10) public static void main(String args([]) {

11)

12)

13) try{

14) //

15) // You must set this unless you want NULL bytes padding out

16) // character fields.

17) //

18) Util.setxBaseJProperty ("fieldFilledWithSpaces", "true");

19)

20) //Create a new dbf file

21) DBF aDB=new DBF ("roi.dbf",true);

22)

23) //Create the fields

24) NumField pctrtn = new NumField("pctrtn",6, 3);

25) CharField fundnm = new CharField (" fundnm", 20);
)

NumField invstamt = new NumField ("invstamt", 15,2);



Chapfter [ - Fundamentals

//Add field definitions to database
aDB.addField (pctrtn);

aDB.addField (fundnm) ;

aDB.addField (invstamt) ;

aDB.createIndex ("roik0.ndx", "pctrtn", true, true); // true -
delete ndx, true - unique index,
System.out.println("\nindex created ... now adding records");

fundnm.put ("LargeCap") ;
pctrtn.put (-4.5);
invstamt.put (550000) ;
aDB.write () ;

fundnm.put ("MidCap") ;
pctrtn.put (2.3);
invstamt.put (120000) ;
aDB.write();

fundnm.put ("Growth") ;
pctrtn.put (3.4);
invstamt.put (45000000) ;
aDB.write();

fundnm.put ("SmallCap");
pctrtn.put (-6.2);
invstamt.put (23000000000.0) ;
aDB.write () ;

fundnm.put ("Spyder") ;
pctrtn.put (2);
invstamt.put (78923425);
aDB.write();

fundnm.put ("PennyStk") ;
pctrtn.put (26.5);
invstamt.put (888000) ;
aDB.write () ;

fundnm.put ("BioTech");
pctrtn.put (-34.6);
invstamt.put (345567.89);
aDB.write () ;

System.out.println( "Records added\n");
System.out.println( "ROI Fund Amount") ;
System.out.println( "--————  -———————————————————— - ") ;

aDB.startTop () ;
for( int i=0; i < aDB.getRecordCount (); i++)
{
aDB. findNext () ;
System.out.println( pctrtn.get () + " " + fundnm.get () +
invstamt.get ());

}

’

}catch (Exception e) {
e.printStackTrace ()
}

}

}



Chaprer I — Fundamentals 53

Notice at listing line 24 that I declare pctrtn to be six long with three decimal places. I then
go ahead and make this an index for the data file. At listing line 68 I assign the value -34.6 to the
field. It seems innocent enough, doesn' tit? Let' s take a look at what happens.

roland@logikaldesktop:~/fuelsurcharge2$ javac example5.java
roland@logikaldesktop:~/fuelsurcharge2$ java example5

index created ... now adding records
Records added

ROI Fund Amount
-6.200 SmallCap 23000000000.00
-4.600 BioTech 345567.89
-4.500 LargeCap 550000.00
2.000 Spyder 78923425.00
2.300 MidCap 120000.00
3.400 Growth 45000000.00
26.500 PennyStk 888000.00

Take a look at where our BioTech record ended up. That' mot the value we assigned, is it?
There was no exception thrown when we ran the program; we simply got the wrong value stored.

1.8 Programming Assignment 2

Modify example5.java by expanding the size of the ROI column and try to add a record with
a fund name greater than 20 characters.

1.9 Examining a DBF

From the 1960s through much of the 1980s, software vendors tried to lock people into their
product lines in a variety of ways. One of the most tried and true methods was to create your own
proprietary data file format. Even if you used the indexed file system provided by the computer
operating system, as long as you didn' tough up the record layouts, your customers couldn' t
access their data without using your software and/or buying additional services from you. Given
that MBAs are creatures who go to school to have both their ethics and soul removed so they can
run a business in the most profitable method possible, the fees kept going up and the lawyers kept
getting richer over breach of contract lawsuits.

Ashton Tate certainly tried to go that route with dBASE, but there was a lot of existing
technology out there for people to work with. The lawyers and the attitude continued to turn all
potential new customers against Ashton Tate and the other XBASE platforms gained ground.
Ultimately, there were quite a few things that did Ashton Tate in. First off, all of the xBASE file
formats stored the file layout information in the header. All you had to do was figure out how to
parse the header and you could get to most of the data. Second, Vulcan, the original version of



54 Chapter [ - Fundamentals

what became dBASE II, wasn' teleased as a commercial product. We didn' have the Internet
back then, but we had BBS networks which participated in echo relays and gave access credit for
file uploads. Once Vulcan made it to a couple of the larger boards, it was everywhere in under a
month. This gave nearly every competing product the same starting point.

Given the memory restrictions of the day, Ashton Tate and others didn' have the option of
hiding all of the information in some encrypted format and requiring an engine to be running like
MySQL, Oracle, or any of the other database engines of today. The Jet Propulsion Laboratory
wasn' t ithe business of putting out commercial software. They simply had a severe need to store
data in some indexed format for reporting purposes. A need so severe that someone was allowed
to take however much time it took them to solve the problem. They chose to solve the problem in
the most easily supportable means available to them at the time.

If you aren' t longn the tooth like myself, you probably don' tinderstand just how easy it is to
support the xBASE format. Our next example should give you some idea.

showMe.java

1) import java.io.*;

2) import java.util.*;

3) import Jjava.text.*;

4) import org.xBaseJ.*;

5) import org.xBaseJ.fields.*;

6) import org.xBaseJ.Util.*;

7)

8) public class showMe {

9)

10 public static final int MAX_NAME_LEN = 11;
11

12 // variables used by the class

13 //

14 private DBF aDB = null;

15

16 private boolean continue_flg = true;
17

18 Iiiiiiiiiii

19 // Main module

20 Iliiiiiiiiii

21 public void showDBF ( String _dbfName) {
22 try{

23 aDB = new DBF( _dbfName);

)
)
)
)
)
)
)
)
)
)
)
)
)
)
24) } catch( xBaseJException j) {
)
)
)
)
)
)
)
)
)
)
)
)
)

25 System.out.println( "Unable to open " + _dbfName);

26 } // end catch xBaseJException

27 catch( IOException i) {

28 System.out.println( "Unable to open " + _dbfName);

29 } // end catch IOException

30

31 System.out.println( "\n" + _dbfName + " has:");

32 System.out.println( " " + aDB.getRecordCount () + " records");
33 System.out.println( " " + aDB.getFieldCount () + " fields\n");
34 System.out.println( " FIELDS");

35 System.out.println( "Name "o+

36 "Type Length Decimals");

37 System.out.println( "-———-—————————————— "o+



Chaprer I — Fundamentals 55

38) w_ ll)

39)

40) StringBuilder sb = new StringBuilder();

41) Formatter r = new Formatter( sb, Locale.US);
42)

43) for( int i=1; i <= aDB.getFieldCount (); i++) {
44) try {

45) Field f = aDB.getField(i);

46) r.format ( " %$-25s %lc $4d %$4d\n",
47) f.getName (),

48) f.getType (),

49) f.getLength(),

50) f.getDecimalPositionCount ());

51) } catch( xBaseJException x) {

52) System.out.println( "Error obtaining field info");
53) }

54)

55) } // end for loop

56)

57) System.out.println( r.toString());

58)

59) try {

60) aDB.close () ;

61) } catch( IOException o) {}

62)

63) } // end showDBF method

64)

65) Iliiiiiisiii

66) // Method to dump all records in database

67) Iliiiiiiiiii

68) public void dump_records( String _dbfName) {

69) dump_records ( _dbfName, -1);

70) } // end dump_records method

71)

72) Iliiiiiisiii

73) // Method to dump first N records from database.
74 Iliiiiiiiiii

75 public void dump_records( String _dbfName, int _reccount) {
76 int the_count = 0;

77

78 if (_reccount < 1) {

79 try({

80 aDB = new DBF ( _dbfName);

81 the_count = aDB.getRecordCount () ;

)
)
)
)
)
)
)
)
82) aDB.close();
)
)
)
)
)
)
)

83 } catch( xBaseJException j) {

84 System.out.println( "Unable to open " + _dbfName);
85 } // end catch xBaseJException

86 catch( IOException i) {

87 System.out.println( "Unable to open " + _dbfName);
88 } // end catch IOException

89 } else {

90) the_count = _reccount;

91) } // end test for negative _reccount parameter

92)

93) dump_records ( _dbfName, 1, the_count);

94) } // end dump_records method

95)

96) Iliiiiiisiii

97) // Method to dump a range of records from start to end.

98) Iliiiiiiiiii

99) public void dump_records( String _dbfName, int _startRec, int _endRec)

100) int 1_x=0;



56

101)
102)
103)
104)
105)
106)
107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)
145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)
160)
161)
162)
163)

Chapfter [ - Fundamentals

int curr_width=0;

StringBuilder sb = new StringBuilder();
Formatter r = new Formatter( sb, Locale.US);
try {

try

aDB = new DBF ( _dbfName) ;
} catch( xBaseJException j) {

System.out.println( "Unable to open " + _dbfName);

} // end catch xBaseJException
catch( IOException i) {

System.out.println( "Unable to open " + _dbfName);

} // end catch IOException

{

int field_count = aDB.getFieldCount ();

int heading_length = 0;
String dash_line = "";

for (int i=1; i <= field_count; i++)

int fld_width = MAX_NAME_LEN;
int x;

Field f = aDB.getField(i);
String namStr = f.getName () ;

x = (fld_width > f.getLength())
String s8 = "%-" + x + "s ";
r.format ( s8, namStr);

//

{

? fld_width f.getLength();

// I have never understood how Java could be declared
// so advanced by so many and the language not

// include something as fundamental as the STRINGS ()
// function from BASIC to generate an N length string

// of some character.

//
char[] dl = new char|[ x];
Arrays.fill( d1, '-'");

dash_line += new String(dl) + "

} // end for loop to print headings

System.out.println( r.toString());
System.out.println( dash_line);

for (l_x=_startRec; 1l_x <= _endRec;
if (sb.length() > 0)
{

}

sb.delete (0, sb.length());

aDB.gotoRecord( 1_x);

for (int j=1; j <= field_count;
Field f = aDB.getField(]);
switch (f.getType()) {
case 'C':

1_x++) {

// nuke output buffer

jt+) |

CharField ¢ = (CharField) f£;
curr_width = (MAX_NAME_LEN > c.getLength()) *?

MAX_NAME_LEN

c.getLength();

String s = "%-" + curr_width + "s ";

r.format ( s, c.get());
break;

case 'D':



Chapter [ — Fundamentals

164)
165)
166)
167)
168)
169)
170)
171)
172)
173)
174)
175)
176)
177)
178)
179)
180)
181)
182)
183)
184)
185)
186)
187)
188)
189)
190)
191)
192)
193)
194)
195)
196)
197)
198)
199)
200)
201)
202)
203)
204)
205)
206)
207)
208)
209)
210)
211)
212)
213)
214)
215)
216)
217)
218)
219)
220)

}

case

case

case

case

case

defa

DateField d

r.format ( "%$8s ", d.get());
break;

'F':
FloatField o = (FloatField) f£;

curr_width = (MAX_NAME_LEN > o.getLength())
MAX_NAME_LEN : o.getLength();

String s6 = "%" + curr_width + "s ";
r.format ( s6, o.get());
break;

'L':
LogicalField 1 = (LogicalField) f£f;
curr_width = MAX_NAME_LEN;
String sl = "$" + curr_width + "s ";
r.format ( sl, l.get());

break;
YMI .

MemoField m
r.format ( "%
break;

N
NumField n =
curr_width =
MAX_NAME
String s2 =
r.format ( s2
break;

pr.

PictureField
curr_width =

= (DateField) f£;

// we don't actually go get the memo

// Jjust print the id for it.
= (MemoField) f£;
10s ", m.get());

(NumField) f£f;
(MAX_NAME_LEN > n.getLength())

_LEN : n.getLength();

"$" + curr_width + "s ";
, n.get());

p = (PictureField) f£f;

(MAX_NAME_LEN > p.getLength())

MAX_NAME_LEN : p.getLength();

String s3 =
r.format ( s3
break;

ult:
r.format ("?"

"$" + curr_width + "s ";
; p.get());

)i

} // end type switch
} // end inner for loop to print each field
System.out.println( r.toString());
} // end for loop to write detail

aDB.close () ;

} catch( xBaseJException j) {

System.o

ut.println(

"Error processing record ");

} // end catch xBaseJException
catch( IOException i) {

System.o
} // end catch

ut.println(
IOException

} // end dump_records method

// end showMe class

"Unable to open " + _dbfName);

?

?

57

?



58 Chapfter [ - Fundamentals

In case some of you don' teally know anything about Java, let me point out that listing line
10 is how you declare a class constant. This constant can be referenced from any application even
if users don' t hwe an instance of this class, as long as they have imported the class file. To access
it they would simply need to type showMe.MAX_NAME_LEN in any source file which imports
the showMe class. The maximum name allowed by early xBASE implementations was ten
characters; a value of eleven allows for a trailing space.

Listing lines 22 through 29 were an attempt to show you localized error handling. It does
make the code ugly. If xBaseJException had a constructor which allowed for an integer
parameter, or better yet, an enum type, we wouldn' t have to perform localized handling just to trap
for an open error. If all of the code is in one big try/catch block, we have no method of figuring
out exactly where the exception occurred. Yes, you can print the stack trace, but if doing so only
releases a JAR file containing your application, what good is that to the user?

One of the first things that should catch your attention is listing lines 32 and 33. The header
record of a DBF actually keeps track of both the record count and the field count. We use the
methods provided by the class to access these values.

I need to get on my high horse a minute about StringBuilder and Formatter. Up until
Formatter was added to the Java language, it was completely unusable for business purposes. 1
have been lambasted by many a useless PhD for pointing out that Java was absolutely useless in
the business world because it was physically incapable of producing a columnar report. Every
language those never-worked-in-the-real-world academics put down as being inferior to Java
because they preceded it could, and did, produce columnar reports. You see these reports every
time you get your credit card statement, phone bill, etc. Business cannot function without the
capability to produce columnar reports.

The C language gave us a format string very early on. It evolved over the years to become
quite a dynamic thing. Listing line 46 shows you an example what we ended up with in Java. It
resembles the C format string in many ways, but fails in one critical way. The C format string
allowed a developer to use something like the following:

printf( “%-*s\n”, curr_width, “some kind of day”);

The hyphen, ", forced the left justification as it does in Java. The asterisk, “*”, told the
formatting logic to take the next parameter from the last and use it as the WIDTH of the field.
This allowed a programmer to do cool things like centering a heading on a page. It was very
common to see things like the following:

printf( “%$*s%s\n”, 66-(strlen(heading_str)/2), “ “, heading_str);



Chaprer I — Fundamentals 59

Most business reports printed on 132-column greenbar paper. If you subtracted half the
length of the string from the midpoint of the line that told you roughly how many spaces to print
in front of the string.

Java isn' tuite so progressive. Listing lines 153 through 156 will show you an example of
the hack I had to make to work around this failure. It isn' pretty, but I had to build a dynamic
String which contained the actual width value and pass that in as the first parameter.

Notice all of the information the Field class contains. There are actually many more methods;
I simply focused on the ones we would need. Prior versions of xBasel] will not return the correct
result from f.getType(). Field is a base class. Thankfully we can instantiate it. Because it is a
base class, it has no knowledge of the classes which were derived from it. Java has RTTI (Run
Time Type Identification) which keeps track of who is what to who, but the class Field doesn' t
know. If you try to call the getType() method of the Field class in an older version of xBase], it
will toss an exception. I turned in a modification which allows it to return either the correct result

' '

or' -' toindicate an un-initialized value.

Older versions of xBaseJ have Field.java containing the following:

/**
* @return char field type
* @throws xBaseJException

* undefined field type
*/
public char getType () throws xBaseJException
{
if (true)
throw new xBaseJException ("Undefined field");
return '_"';

}

Every class derived from it ends up having code like this:

/**
* return the character 'D' indicating a date field
*/
public char getType ()
{

return 'D';

}

Field.java now has the code below.

/**
* @return char field type
*/
public abstract char getType();

This forces a Field instance pointer to use the getType() method provided by the derived
class. It' s a win all around.



60 Chapfter [ - Fundamentals

You will notice that we have multiple dump_records() methods. All of them taking different
parameters. This is an example of polymorphism. Actually I was forced into it because Java isn' t
polite enough to allow default argument values, as does C++. The first method will dump all of
the records in the database, the second will dump only the first N records in the database, and the
last will dump records X through Y from the database.

Of course, in order to dump the records, one has to know what each column is and how wide
the column will be upon output. The for loop at listing lines 148 through 168 takes care of
displaying the column headings. The calculation of x is an attempt to center the heading over the
data column.

Take a look at listing lines 135 through 137. When you program in BASIC on real computers
you make a string of a single character by calling STRING$(len, ascii_value). If you want to
create a string of 30 hyphens you would type the following:

STRINGS ( 30%, ASCII("-"))

The 30% could of course be an integer variable like X%. The String class for Java comes up
short in this area. In the world of C programming we used to declare a generic buffer at the start
of a module, then do the three-step shuffle:

char work_str[1024];

memset ( work_str, '\0', sizeof( work_str));
memset ( work_str, '-', 1_x);
strcat ( output_str, work_str);

C used null-terminated strings. The first step nulled out the buffer. The second step put just
the right number of characters into the buffer and the third step added the buffer to the destination
string. It isn' that much different than what we were forced to do in Java. Here we had the
restriction that Java doesn' t use null-terminated char arrays for strings. The expedient method was
to dynamically declare the char array each pass through the for loop. The fill() method of the
Arrays class allows us to set every element to a specific value. Finally we can add the hyphen
string along with some spaces to the string which will actually be printed.

Listing lines 152 through 206 get just a little ugly. The code isn' complex, it simply got ugly
trying to fit. I had to deal with page margin issues when writing this, hence the use of the
conditional operator “?:”. If you have read the other books in this series you will know that I am
definitely NOT a fan of this operator. It makes code difficult to read, especially for a novice. Itis
really shorthand for ‘if () then otherwise.” If the expression in the parenthesis evaluates to true,
then you return the value between the ? and the :, otherwise, you return the value following the :.
It is true that I could have replaced each of those lines with the following:



Chaprer I — Fundamentals 61

if (MAX_NAME_LEN > p.getLength())

curr_width = MAX_NAME_LEN
else

curr_width = p.getlength();

None of you really wanted me to use ‘if” statements inside of switch cases, though if you
work in the real world you will see them quite often. As a general rule, you are not in trouble

until your nesting gets more than 3 levels deep.

The display logic for each column isn' ttomplex, but might require a bit of explanation.
MAX_NAME_LEN is defined to be eleven because ten used to be the maximum length for a
column name under most xBASE flavors, and eleven ensures we will have at least one trailing
space. When displaying a data column, I want this example to be at least wide enough to display
the name. (One thing which really annoys me about most spreadsheet applications is they size
columns to the data size, even when the column is a Boolean.) When we are dealing with a
character field I use the “” in the format string to left-justify the output. Most everything else I
simply let slam against the right. I don' bother formatting date values in this example. You can
write thousands of lines of code formatting dates in every format imaginable, and still somebody
will want the date formatted differently.
testShowMe.java

1) public class testShowMe {

2)

3) public static void main (String argsl[]) {

4) showMe s = new showMe () ;

5)

6) s.showDBF ("class.dbf");

7) System.out.println( "\n");

8) s.showDBF ( "teacher.dbf");

9) System.out.println( "\n");

10 System.out.println( " Entire class.dbf");
11 s.dump_records ( "class.dbf");

12 System.out.println( "\n");

13 System.out.println( " Records 2 and 3 from class.dbf");
14 s.dump_records ( "class.dbf", 2, 3);

15 System.out.println( "\n");

)
)
)
)
)
)
16) System.out.println( " First record from teacher.dbf");
)
)
)
)
)

17 s.dump_records ( "teacher.dbf", 1);
18

19 } // end main method

20

21 } // end class testShowMe

The test module simply displays various things from the two DBF files created by the sample
programs which are posted on the xBaseJ Web site. I have shown you the program which creates
the class.dbf file in this book. We don' teally have any need to cover the teacher.dbf, but it is
created by example3.java found in the xBase]J distribution or on the SourceForge site.



62 Chapter [ - Fundamentals

roland@logikaldesktop:~/fuelsurcharge2$ source ./envl
roland@logikaldesktop:~/fuelsurcharge2$ javac showMe. java
jroland@logikaldesktop:~/fuelsurcharge2$ javac testShowMe. java
roland@logikaldesktop:~/fuelsurcharge2$ java testShowMe

class.dbf has:
3 records

7 fields
FIELDS
Name Type Length Decimals
CLASSID C 9 0
CLASSNAME C 25 0
TEACHERID C 9 0
DAYSMEET C 7 0
TIMEMEET C 4 0
CREDITS N 2 0
UNDERGRAD L 1 0
teacher.dbf has:
3 records
4 fields
FIELDS
Name Type Length Decimals
TEACHERID C 9 0
TEACHERNM C 25 0
DEPT C 4 0
TENURE L 1 0
Entire class.dbf
CLASSID CLASSNAME TEACHERID DAYSMEET TIMEMEET CREDITS UNDERGRAD
JAVAS501 JAVA And Abstract Algebra 120120120 NNYNYNN 0930 6 F
JAVA10200 Intermediate JAVA 300020000 NYNYNYN 0930 3 T
JAVA10100 Introduction to JAVA 120120120 NYNYNYN 0800 3 T
Records 2 and 3 from class.dbf
CLASSID CLASSNAME TEACHERID DAYSMEET TIMEMEET CREDITS UNDERGRAD
JAVA10200 Intermediate JAVA 300020000 NYNYNYN 0930 3 T
JAVA10100 Introduction to JAVA 120120120 NYNYNYN 0800 3 T
First record from teacher.dbf
TEACHERID TEACHERNM DEPT TENURE
120120120 Joanna Coffee 0800 T

When I paste the output into this book layout, we end up with some wrapping problems due
to the width restrictions of the page. I had to shrink the font so it would fit on a line for you. As
you can see, the output is nicely formatted. Once I get past displaying all of the columns on each
database, I display the entire contents of the class.dbf file. This first display allows us to verify
that the second display, restricting output to the second and third record, actually worked. The
last test is simply displaying only the first record from the teacher.dbf file.



Chaprer I — Fundamentals 63

You will squirrel away the showMe.java source file in your toolbox. You might even join the
xBaselJ project team and fix a few things with the library, then clean this example up. If you were
paying attention reading the chart starting on page 20 you also noted that the xXBASE universe
contains a lot of data types which simply aren' supported by this library. Autoincrement (+)
would be a nice addition, but probably not the first you should tackle since doing so would most
likely require that you understand more about the header record. The Datetime (T) column type
would be a welcome addition. When you get into more transaction-oriented applications the field
becomes extremely important. Double (O) and Integer (I) would be interesting for those who
believe they are Uber geeks and capable of getting those datatypes to be correctly stored 7o

matter what platform xBase/ is running on.

I must warn you that I never tested the Picture (P) data type. I had no desire to create a
database and store images in it. More importantly, I had no desire to figure out what image types
(JPEG, BMP, PNG, etc.) were actually supported. I know w7y pictures were added, but I never
played much in that world. Images were added so store catalog/inventory records could contain a
memo field with the item description, and a picture field with an image of the item. If you have
an eBay store with around 100 items, this is fine. If you are running a serious business or think it
g/ turn into a serious business, you should really start with a relational database and bolt on
what you need later. (Remember that 2GB data file limit? We always szy the 4GB file limit was
imposed by FAT32, but have you checked the header file and 10 digit tag algorithm of a memo
file to ensure it isn' t limited by an unsigned 32-bit integer as well?)

1.10 Programming Assignment 3

Modify the last two dump_records() calls in testShowMe.java to dump only the second record
of class.dbf and only the third record respectively. This is a very simple assignment designed to
build confidence in the boundary logic of the dump_records() method.

Create your own version of testShowMe.java which operates on the teacher.dbf file. T haven' t
provided you the source to create the teacher.dbf file, so you will need to pull it down from the
xBase] project site.



64 Chapter [ - Fundamentals

1.11 Descending Indexes and Index Lifespan

You have already seen how indexes can be useful when it comes to keeping data in a sorted
order. Even if the data isn' physically sorted, the index allows you to retrieve it in the order you
want. We haven' done much with direct record access yet, but you probably understand it is
another benefit of having an index.

One extremely useful type of index is the descending index. You will find this type of index
used for many different things in a production world. Some inventory systems use a descending
index for product keys in their inventory files. Let' say you run a gas station with a small
convenience store in it. You add new products to your inventory file based on a 4-character
product category and a 10-digit item number, then you assign it some kind of barcode scan value.
You need to keep the categories split out for various tax reasons. As long as the item number is
unique, you don' t personally care what it is. You might have some data looking like this:

TOBA0009876543 CIG GENERIC MENTH BOX
TOBA0009876542 CIG GENERIC MENTH
TOBA0009876541 CIG GENERIC
DARY0000056432 QUART MILK 2%
DARY0000056431 QUART MILK WHOLE
DARY0000056430 QUART MILK CHOC 2%

Whenever you added a new product, you would only need to know what category to put it
under and your system could automatically calculate the next item number by using the category
against the descending key. Given the data above, the first hit for “TOBA” would return
‘TOBA00009876543” which would let our routine add one to the numeric portion for a new key.
Likewise, ‘DARY” would return ‘DARY0000056432 .” (Yes, dary is really spelled dairy, but not

in old-school inventoryspeak.)

xBaseJ didn' tprovide us with descending indexes. This was actually a flaw many early
xBASE packages had. A lot of useless data ended up getting stored in production data files trying
to work around this problem. It was not uncommon to find bogus numeric columns which
contained the result of a field of all 9' svith another column (usually a date) subtracted from it. It
would be this bogus column, not the actual column, which would be made part of a key.

MYDT MYDTDS

19990801 80009198
19550401 80449598
19200101 80799898

As you can see, the newest date has the smallest value, which makes it the first key in an
ascending key list. Developers dealing with character fields wrote functions and subroutines
which would subtract the string from a string of all Z' s to achieve this same sort order.



Chaprer I — Fundamentals 65

If you are someone who has never had a machine slower than 2Ghz or less than 2GB of
RAM, you probably have a lot of trouble understanding why descending indexes are so important.
You will happily use the startBottom() and readPrev() methods provided by xBaseJ performing
needless I/0 on nearly one-third of the database looking for that one particular record. Those of
us who grew up in the PC era understand the need completely. We used to have to wait multiple
seconds for each record to be retrieved from that 10MB full-height hard drive. Even if they deny
it, we all know that Seagate added that chirping cricket sound and flashing light simply to keep
people entertained while they were desperately trying to find the disk block they were interested
in.

While you can find the record you are looking for by brute force, index searching is much
less resource intensive. I' mmot going to print the source for find_entry( NodeKey, Node, int) of
the NDXjava file in this book. It' some pretty intense code. It' siot difficult to read, just one of
those routines where you have to wrap your mind around it at one sitting, and not get up to go to
the bathroom until you have found what you intended to find. All you need to know is that it
relies on a bunch of other classes to walk the nodes in the Btree looking for your key value.
Ultimately, it is this method which gets called from the DBF class whenever you call find(“abc”).
(Assuming, of course, that you are using NDX instead of MDX as your indexed file.)

doeHistory.java

1) import java.io.*;

2) import java.util.*;

3) import org.xBasedJ.*;

4) import org.xBaseJ.fields.*;

5) import org.xBaseJ.Util.*;

6) import org.xBaseJ.indexes.NDX;

7

8) public class doeHistory {

9)

10 // variables used by the class

11 //

12 private DBF aDB = null;

13

14 // fields

15 public DateField effectiveDT = null;
16 private NumField effectiveDTDesc = null;
17 public NumField fuelPrice = null;

18

19 // file names

)
)
)
)
)
)
)
)
)
)
20) public final String DEFAULT_DB_NAME
)
)
)
)
)
)
)
)
)
)

= "doehst.dbf";
21 public final String DEFAULT_KO_NAME = "doe_kO.ndx";
22 public final String DEFAULT_K1_NAME = "doe_kl.ndx";
23
24 // work variables
25 private boolean continue_flg = true;
26 private boolean dbOpen = false;
27
28 // result codes
29 public static final int DOE_SUCCESS = 1;
30 public static final int DOE_DUPE_KEY = 2;



Chapfter [ - Fundamentals

public static final int DOE_KEY_NOT_FOUND
public static final int DOE_FILE_OPEN_ERR
public static final int DOE_DEVICE_FULL =
public static final int DOE_NO_CURRENT_REC =
public static final int DOE_DELETE_FAIL =
public static final int DOE_GOTO_FAIL
public static final int DOE_DB_CREATE_FAIL
public static final int DOE_INVALID_DATA
public static final int DOE_END_OF_FILE

HFEOOWO-Jo Ul W

3 O N+ Ne Ne Ne oNe Ne o N.
~e S

[liiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Method to add a record
This method assumes you have values already loaded

Many different flavors exist to accommodate what the
user may have for input

public int add_record() {

int ret_val = DOE_SUCCESS;
long x;

try {
x = 99999999 - Long.parselong(effectiveDT.get ());
} catch (NumberFormatException n) {
x = 99999999;
} // end catch NumberFormatException

//
// stop the user from doing something stupid
//
if (!dbOpen)
return DOE_FILE_OPEN_ERR;

try |
effectiveDTIDesc.put ( x);
aDB.write();
} catch ( xBaseJException j) {
ret_val = DOE_DUPE_KEY;
System.out.println( j.getMessage());
} // end catch
catch( IOException i) {
ret_val = DOE_DEVICE_FULL;
} // end catch IOException

return ret_val;
// end add_record method

public int add_record( String d, String f) {

int ret_val = DOE_SUCCESS;

try {
effectiveDT.put ( d);
fuelPrice.put ( £f);
} catch ( xBaseJException j) {
if (j.getMessage () .indexOf ( "Invalid length for date Field")
ret_val = DOE_INVALID_DATA;
else
ret_val = DOE_DUPE_KEY;
} // end catch

if (ret_val == DOE_SUCCESS)



Chapter [ — Fundamentals

return add_record();
else
return ret_val;

}

public int add_record( Date d, float f) {

int ret_val = DOE_SUCCESS;

try {
effectiveDT.put ( d);
fuelPrice.put ( f);

} catch ( xBaseJException 7J) {
ret_val = DOE_DUPE_KEY;

} // end catch

if (ret_val == DOE_SUCCESS)
return add_record();
else
return ret_val;

}

public int add_record( DateField d, NumField f) {
effectiveDT = d;
fuelPrice = £f;
return add_record();

}

// Method to populate known class level field objects.
// This was split out into its own method so it could be used
// by either the open or the create.

private void attach_fields( boolean created_flg) {
try |
if ( created_flg) {
//Create the fields
effectiveDT = new DateField( "ef_dt");
fuelPrice = new NumField( "fuelprice", 6, 3);
effectiveDTDesc = new NumField( "ef_dtds", 8, 0);

//Add field definitions to database
aDB.addField (effectiveDT) ;
aDB.addField (effectiveDTDesc) ;
aDB.addField (fuelPrice);

} else {
effectiveDT = (DateField) aDB.getField("ef_dt");
fuelPrice = (NumField) aDB.getField("fuelprice");
effectiveDTDesc = (NumField) aDB.getField("ef_dtds");

}

} catch ( xBaseJException 7J) {
j.printStackTrace();
} // end catch
catch( IOException i) {
i.printStackTrace();
} // end catch IOException
} // end attach_fields method

// Method to close the database.
// Don't print stack traces here. If close fails it 1is
// most likely because the database was never opened.

67



68 Chapfter [ - Fundamentals

157) [liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

158) public void close_database () {

159) if (!dbOpen)

160) return;

161) try {

162) if (abB != null) {

163) aDB.close () ;

164) dbOpen = false;

165) }

166) } catch (IOException i) {}

167)

168) } // end close_database method

169)

170) [l Giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

171) // Method to create a shiny new database

172) [liiiiiisiiiiiiiisiiiiiiiiiiiiiiiiiiiiiiii

173) public void create_database() {

174) try |

175) //Create a new dbf file

176) aDB=new DBF (DEFAULT_DB_NAME, true) ;

177)

178) attach_fields (true);

179)

180) aDB.createIndex (DEFAULT_K1_NAME, "ef_dtds", true, true);
181) aDB.createIndex (DEFAULT_KO_NAME, "ef_dt", true, true);
182) dbOpen = true;

183) } catch( xBaseJException j) {

184) System.out.println( "xBaseJ Error creating database");
185) j.printStackTrace () ;

186) continue_flg = false;

187) } // end catch

188) catch( IOException i) {

189) System.out.println( "IO Error creating database");
190) i.printStackTrace();

191) continue_flg = false;

192) } // end catch IOException

193) } // end create_database method

194)

195) i i i i i i i i i i i il

196) // Method to delete a record from the database
197) )i i i i i i i i i i i i il

198) public int delete_record() {

199) int ret_val = DOE_SUCCESS;

200)

201) if (!dbOpen)

202) return DOE_FILE_OPEN_ERR;

203)

204) if (aDB.getCurrentRecordNumber () < 1) {

205) System.out.println( "current record number " +
206) aDB.getCurrentRecordNumber () ) ;

207) ret_val = DOE_NO_CURRENT_REC;

208) }

209) else {

210) try {

211) aDB.delete () ;

212) } catch( xBaseJException 7j) {

213) ret_val = DOE_DELETE_FAIL;

214) } // end catch

215) catch( IOException i) {

216) ret_val = DOE_DELETE_FAIL;

217) } // end catch IOException

218) } // end test for current record

219)



Chapter I — Fundamentals

220) return ret_val;

221) } // end delete_record method

222)

223) public int delete_record( String d) {

224) int ret_val = DOE_SUCCESS;

225)

226) ret_val = find_EQ_record( d);

227) if ( ret_val == DOE_SUCCESS)

228) ret_val = delete_record();

229) return ret_val;

230)

231) } // end delete_record method

232)

233) public int delete_record( int record_num) {
234) int ret_val = DOE_SUCCESS;

235)

236) if (!dbOpen)

237) return DOE_FILE_OPEN_ERR;

238)

239) try {

240) aDB.gotoRecord( record_num);
241) } catch( xBaseJException j) {

242) j.printStackTrace () ;

243) ret_val = DOE_NO_CURRENT_REC;
244) } // end catch

245) catch( IOException i) {

246) i.printStackTrace();

247) ret_val = DOE_NO_CURRENT_REC;
248) } // end catch IOException

249)

250) if (ret_val == DOE_SUCCESS)

251) ret_val = delete_record();

252)

253) return ret_val;

254) } // end delete_record method

255)

256) [liiiiisitisisiiiiiiniiiiiiiiiiitiiriiiiii
257) // Method to dump first 10 records

258) [liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
259) public void dump_first_10() {

260) if (!dbOpen) {

261) System.out.println( "Must open database first");
262) return;

263) } // end test for open database

264)

265) try {

266) System.out.println( "\nDate Price");
267) System.out.println( "-———---= —————————— ")
268) for (int x=1; x < 11; x++) {

269) aDB.gotoRecord(x) ;

270) System.out.println( effectiveDT.get () + "
271) } // end for x loop

272) } catch( xBaseJException j) {

273) j.printStackTrace();

274) } // end catch

275) catch( IOException i) {

276) i.printStackTrace();

277) }// end catch IOException

278)

279) } // end dump_first_10 method

280)

281) public void dump_first_10_kO0 () {

282) if (!dbOpen) {

69

" + fuelPrice.get());



70

283)
284)
285)
286)
287)
288)
289)
290)
291)
292)
293)
294)
295)
296)
297)
298)
299)
300)
301)
302)
303)
304)
305)
306)
307)
308)
309)
310)
311)
312)
313)
314)
315)
316)
317)
318)
319)
320)
321)
322)
323)
324)
325)
326)
327)
328)
329)
330)
331)
332)
333)
334)
335)
336)
337)
338)
339)
340)
341)
342)
343)
344)

Chapfter [ - Fundamentals

System.out.println( "Must open database first");
return;
// end test for open database

try |

aDB.uselIndex ( DEFAULT_KO_NAME) ;
aDB.startTop () ;
System.out.println( "\nDate Price");
System.out.println( "-———---= —————————- "y
for (int x=1; x < 11; x++) {

aDB. findNext () ;

System.out.println( effectiveDT.get () + "
} // end for x loop

} catch( xBaseJException j) {

j.printStackTrace();
// end catch

catch( IOException i) {

i.printStackTrace();
// end catch IOException

// end dump_first_10_k0 method

public void dump_first_10_k1() {

(!dbOpen) {

System.out.println( "Must open database first");
return;

// end test for open database

try {

aDB.uselIndex ( DEFAULT_K1_NAME) ;
aDB.startTop () ;
System.out.println( "\nDate Price");
System.out.println( "-———---= —————————- "y
for (int x=1; x < 11; x++) {

aDB. findNext () ;

System.out.println( effectiveDT.get () + "
} // end for x loop

} catch( xBaseJException j) {

j.printStackTrace();
// end catch

catch( IOException i) {

i.printStackTrace();
// end catch IOException

// end dump_first_10_kl method

public int find EQ_ record( String d) {
int ret_val = DOE_SUCCESS;
boolean perfect_hit;

(!dbOpen)
return DOE_FILE_OPEN_ERR;

try {

aDB.uselIndex ( DEFAULT_KO_NAME) ;
perfect_hit = aDB.findExact( d);

if ( !perfect_hit) {
System.out.println( "missed");
System.out.println( "Current Record " +

aDB.getCurrentRecordNumber () ) ;

" + fuelPrice.get());

" + fuelPrice.get());



Chapter [ — Fundamentals

345)
346)
347)
348)
349)
350)
351)
352)
353)
354)
355)
356)
357)
358)
359)
360)
361)
362)
363)
364)
365)
366)
367)
368)
369)
370)
371)
372)
373)
374)
375)
376)
377)
378)
379)
380)
381)
382)
383)
384)
385)
386)
387)
388)
389)
390)
391)
392)
393)
394)
395)
396)
397)
398)
399)
400)
401)
402)
403)
404)
405)
406)
407)

ret_val = DOE_KEY_ NOT_FOUND;
}

} catch( xBaseJException j) {

}

System.out.println( j.getMessage());
ret_val = DOE_KEY_NOT_FOUND;
// end catch

catch( IOException i) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch IOException

return ret_val;
} // end find_EQ_record method

public int find_GE_record( String d) {
int ret_val = DOE_SUCCESS;

if (!dbOpen)
return DOE_FILE_OPEN_ERR;

try |

aDB.uselIndex ( DEFAULT_KO_NAME) ;
aDB.find( d);

} catch( xBaseJException j) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch

catch( IOException i) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch IOException

return ret_val;
} // end find_GE_record method

public int get_newest () {
int ret_val = DOE_SUCCESS;

if (!dbOpen)
return DOE_FILE_OPEN_ERR;

try f

aDB.useIndex ( DEFAULT_K1_NAME) ;
aDB.startTop () ;
aDB. findNext () ;

} catch( xBaseJException j) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch

catch( IOException i) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch IOException

return ret_val;
}// end get_newest method

// method to get next record no matter
// what index is in use.

public int get_next () {
int ret_val = DOE_SUCCESS;

try {

aDB. findNext () ;



72

408)
409)
410)
411)
412)
413)
414)
415)
416)
417)
418)
419)
420)
421)
422)
423)
424)
425)
426)
427)
428)
429)
430)
431)
432)
433)
434)
435)
436)
437)
438)
439)
440)
441)
442)
443)
444)
445)
446)
447)
448)
449)
450)
451)
452)
453)
454)
455)
456)
457)
458)
459)
460)
461)
462)
463)
464)
465)
466)
467)
468)
469)
470)

//

}
}

catch ( xBaseJException 7J) {
ret_val = DOE_KEY_NOT_FOUND;
// end catch

catch( IOException i) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch IOException

return ret_val;

}// end get_next method

public int get_oldest () {
int ret_val = DOE_SUCCESS;
if (!dbOpen)
return DOE_FILE_OPEN_ERR;

try {

}
}

aDB.uselIndex ( DEFAULT_KO_NAME) ;
aDB.startTop () ;
aDB. findNext () ;

catch( xBaseJException 3J) {
ret_val = DOE_KEY_NOT_FOUND;
// end catch

catch( IOException i) {

}

ret_val = DOE_KEY_NOT_FOUND;
// end catch IOException

return ret_val;
} // end get_oldest method

// Method to test private flag and see

// if database has been successfully opened.
Sl iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
public boolean isOpen () {

return dbOpen;
} // end ok_to_continue method

public int open_database() {
int ret_val = DOE_SUCCESS;

try |

//Create a new dbf file

aDB=new DBF (DEFAULT_DB_NAME) ;

attach_fields( false);

aDB.uselIndex ( DEFAULT_KO_NAME) ;

aDB.useIndex ( DEFAULT_KI1_NAME) ;

dbOpen = true;

}
}

catch( xBaseJException 3J) {
continue_flg = false;
// end catch

catch( IOException i) {

}

continue_flg = false;
// end catch IOException

Chapfter [ - Fundamentals



Chaprer I — Fundamentals 73

471)
472)
473)
474)
475)
476)
477)
478)
479)
480)
481)
482)
483)
484)
485)
486)
487)
488)
489)
490)
491)
492)
493)
494)
495)
496)
497)
498)
499)
500)
501)
502)
503)
504)
505)
506)
507)
508)
509)
510)
511)
512)

if (!continue_flg) {
continue_flg = true;
System.out.println( "Open failed, attempting create");
create_database () ;

} // end test for open failure

if (isOpen{())
return DOE_SUCCESS;
else
return DOE_FILE_OPEN_ERR;

} // end open_database method

public void reIndex () {

if

(aDB != null) {
if (isOpen()) {
try |
NDX n = null;
for (int i=1; i <= aDB.getIndexCount (); i++) {
n = (NDX) aDB.getIndex( 1i);

n.relndex();

}

} catch( xBaseJException j) {
j.printStackTrace();

} // end catch

catch( IOException i) {
i.printStackTrace();

} // end catch IOException

} // end test for open database
// end test for initialized database object

}  // end relIndex method

We don't need to create a finalize method since

each object we create has one. You only create a finalize
method if you allocate some resource which cannot be
directly freed by the Java VM.

// end class doeHistory

I took this example a little farther than most of you probably would in real life. Those of you

who have read other books in this series know that at one point in my life I worked at a DEC

VAR which sold a customized ERP package. The package was written in DEC BASIC. All of

our main files had I/O routines written for them. There were one or two include files you added

to the top of your program, and presto, you had access to all of the I/O routines for that file. The

file name and channel number was pre-assigned, methods were there for reading/writing/deleting/

finding records, and all exceptions were caught in the routine itself. The functions returned

values which had standardized names; in fact, all of the function/method names were the same for
all of the files.



74 Chapter [ - Fundamentals

Writing that first [/O module was a massive pain. Every other file we added after that one
was almost free. Depending upon how fast a typist you were, it took 1-4 hours to create all of the
record layouts and clone a new I/O source file from the original. The programs themselves got a
lot simpler.

Most of you will note that I didn' take this I/O routine quite that far. I didn' tvant to print a
5000-line source file in this book. Even a 500-line source file is pushing it if I actually want you
to read it.

I told you the above story so you would have some frame of reference for why this source file
was structured the way it was. Java doesn' have record layouts and maps, so I made the two
primary fields public. I deliberately made effectiveDTDesc private because that is really for class
use only. I kept the DBF private as well. As we proceed with our design I may regret that
decision, but I wanted to fend off ‘bit twiddler' smpulse.” Odds are greater that I will add the
function to the class if I have to open the class source file to get access to the database object...at
least that is my working theory.

This class also has a bunch of public constants. All of the file names are string constants and
the result codes of integer constants. If you spend any time at all working in IT and working with
indexed files, you will see KO used to refer to a primary key, K1 to the first alternate key, etc. I
have used this notation throughout my career and this book series. When you are dealing with
segmented keys you will see each field of the key have a “‘n” after the key number, such as K1.1,
K1.2, K1.3 etc. There is never a zero segment. It' siot because we don' like zero, we simply
don' wvant to confuse management telling them KO on this file is a single field primary key, but
KO0.0 on this other file indicates the first field of a segmented primary key. As a general rule,

MBAs don' t do zero well.

Since I did not want some user directly manipulating the Boolean work variables the class
needed I made them private. One of them is for internal use only and the other has a method
which will be presented later to allow read access.

I did quite a bit of polymorphism with this class. The add_record() methods should serve as a
good example. The one which does actual 10 is also the default one. Notice how I subtract the
date value from 99999999 to get a value for effectiveDTDesc. While it is true that 99999999 isn' t
a valid date, it is also true that a string of all 9s will do what we need. Since our indexes only
ascend, we need a value that gets smaller as the date gets bigger. The overridden methods of
add_record() are simply there to provide a convenient way of adding a record in a single step.



Chaprer I — Fundamentals 75

The attach_fields() method shouldn' tequire much explanation as you have already seen me
create a method just like this. It is easier to handle this all in one method than replicate it in other
methods.

We could have quite a bit of discussion over the close_database() method. Not so much
concerning the method itself, but the fact I didn' include a finalize() method calling it. There are
multiple schools of thought on this topic, and now is a good time to discuss them.

My class didn' t allocate ay system resources on its own. It didn' t opemny files, allocate any
devices, or physically allocate regions of memory on its own. Every time it did such a thing it
used something else to do it. Our class variables were allocated by the Java Virtual Machine
(JVM). They were either native datatypes or instances of classes provided by others. When you
develop a class, you are responsible for freeing any resources which cannot be freed by the JVM
in your finalize() method.

When an object goes out of scope it is flagged for garbage collection inside of the JVM. That
collection may occur instantaneously or it may take days for the JVM to garbage-collect it. The
finalize() method must physically free any resources (other than dynamically allocated RAM)
which might be needed somewhere else. (We are not going into a discussion over the differences
between dynamically allocated and physically mapped memory as it is a topic for low-level
programming, not business application programming.)

The class we have presented here uses other classes to open the files. When you look at the
source for DBF java, you will see the following:

public void finalize () throws Throwable {
try {
close();
} catch (Exception e) {
7
}
}

When you poke around in that same source file and find the close() method, you will see the
following:



76 Chapfter [ - Fundamentals

public void close () throws IOException {
short 1i;
if (dbtobj != null)

dbtobj.close();

Index NDXes;

NDX nj;

if (jNDXes != null) {

for (i = 1; 1 <= jNDXes.size(); 1i++) {
NDXes = (Index) JjNDXes.elementAt(i - 1);
if (NDXes instanceof NDX) {

n = (NDX) NDXes;
n.close();
}

}
} // end test for null jNDXes 20091010_rth

if (MDXfile != null)
MDXfile.close();

dbtobj null;
jNDXes null;
MDXfile = null;
unlock () ;

file.close();

}

As you should be able to tell, there is a cascading effect when garbage collection starts to
clean up our class. When it attempts to reclaim the class variable aDB it will be forced to call the
finalize() method for the DBF class. That will free up the data file and the index objects. The
index objects will then be garbage-collected, which will free up the files they used, etc.

Since we are talking about deleting things, we should move on to the delete_record() method
and its overrides. I seriously debated making the default method, which deletes the current
record, private. It' & dangerous thing, especially if someone doesn' bother to check the results of
their find call before performing the delete. The overridden versions of the method actually
ensure they locate the correct record prior to deletion.

I probably should not have stuck the dump methods in this class, but it made them quick to
write. Besides, doing so ensures I have a programming assignment for you after this. Notice that
each dump routine makes certain the database is open before proceeding. A lot of Java
developers don' do stuff like this; they simply let things crash, throwing exceptions. One thing
you may not readily notice is that each dump routine which needs an index makes certain the
index it needs is currently on top by calling uselndex(). Readers of other books in this series will
recognize that as ‘establishing the key of reference” from other languages.



Chapter [ — Fundamentals 77

Once we have our key of reference established, the DBF class provides two handy index
positioning methods: startTop() and startBottom(). Once you have established a position and a
key of reference you can use either findNext() or findPrev() to navigate forward or backward
from your current position. The DBF class also provides read() and readPrev(). There is a big
difference between the read and the find methods, though. The read methods require that you
have a current record to establish a position in the file. The find methods only require some
position to have been established in the currently active index. If you open a database, call
startTop(), then attempt to call read() the call will fail.

I added two find methods to this class. Both of them only work with the primary key. The
first will succeed only if a perfectly matching key is found; the second will succeed if a key which
is greater than or equal to the search value is found. It should be noted that these are highly
restrictive methods which should have names which better indicate their restrictiveness.

The only method I provided to operate on the second index is get_newest(). The application I
need to write in real life needs to quickly identify the newest record on file. That record will
provide the ‘turren t” value until a newer record is added. This method looks much like our other
find methods. We establish a key of reference, call startTop() to establish a position, then call
findNext() to pull in the record.

You might think at first glance that get_next() is coded incorrectly. It makes no attempt to
establish any key of reference or position via that key. It couldn' tare less where it is or where it
is going. If you happen to hit one end or the other on the file it will let you know by returning
DOE_KEY_NOT_FOUND, otherwise it returns DOE_SUCCESS and you can be fairly certain
you got the record you wanted.

If you were confused by get_next() or get_newest(), then you should love get_oldest(). It' s
not a complex routine; it simply needs you to really understand both how the indexes work and
what the key actually contains. Remember, indexes are stored only in ascending order with this
library. The smallest date value on file will be the first record in the primary index. We find the
oldest record by getting the record at the top of the primary index (KO) and the newest record by
getting the record at the top of the secondary (K1) index. It is true that you could also get the
newest record on file by calling startBottom() on the primary key and work your way back to the
oldest record by using findPrev(), but when you get your programming assignments you will
thank me.



78 Chapfter [ - Fundamentals

Finally we get to listing line 445. I had to keep track of the database open state and provide a
method of determining its current state to the outside world. I must apologize to the Java hackers
of the world who think it is just dandy to never provide this capability and to just let things throw
exceptions in production. I am not from that school. I' nfrom the school of those who used to
work in operations and had to wake people up at 2AM. I' mmlso from the school of those who
used to work production support along with their development duties and had to get those calls at
2AM. The reason we used to make programmers start out in operations, then work production
support, is to teach them what happens when busted things gets turned in to production. Call
isOpen() before you do something and avoid crashing from an unhandled exception.

We will talk about relndex() after we discuss the test application.

testDoeHistory.java

1) import java.text.*;
2) import java.util.*;
3) import java.io.*;
4)
5) import org.xBaseJ.*;
6)
7) public class testDoeHistory {
8)
9) public static void main (String argsl[]) {
10) doeHistory d = new doeHistory();
11)
12) //
13) // You must set this unless you want NULL bytes padding out
14) // character fields.
15) //
16) try |
17) Util.setxBaseJProperty ("fieldFilledWithSpaces", "true");
18) } catch (IOException e) {
19) System.out.println( "An IO Exception occurred");
20) System.out.println( e.toString());
21) e.printStackTrace();
22) }
23) d.create_database();
24)
25) if (d.isOpen()) {
26) String line_in_str = null;
27) long 1_record_count = 0;
28) boolean eof_flg = false;
29) FileReader in_file = null;
30) BufferedReader input_file = null;
31)
32) try {
33) in _file = new FileReader( "fuel_prices.csv");
34) } catch (FileNotFoundException f) {
35) System.out.println( "File Not Found fuel_prices.csv");
36) eof_flg = true;
37) } // end catch for file not found
38)
39) if (eof_flg == false) {
40) input_file = new BufferedReader( in_file, 4096);
41) System.out.println ("\nPopulating database");
)



Chapter [ — Fundamentals

43)

44) while (eof_flg == false) {

45) try {

46) line_in_str = input_file.readLine();

4a7) }

48) catch (EOFException e) {

49) System.out.println( "End of file exception");

50) eof_flg = true;

51) }

52) catch (IOException e) {

53) System.out.println( "An IO Exception occurred");
(

54) System.out.println( e.toString());

55) e.printStackTrace();

56) eof_flg = true;

57) }

58) if (eof_flg == true) continue;

59) if (line_in_str == null) {

60) System.out.println( "End of intput file reached");
61) eof_flg = true;

62) continue;

63) }

64)

65) 1_record_count++;

66) String input_flds[] = line_in_str.split( ",");
67)

68) try |

69) d.effectiveDT.put ( input_f£f1lds[0]);

70) d.fuelPrice.put ( input_flds[1]);

71) d.add_record() ;

72) } catch ( xBaseJException 7J) {

73) j.printStackTrace();

74) } // end catch

75) } // end while loop to load records

76)

77) System.out.println( "Finished adding " + 1_record_count +
78) " records\n");

79) //

80) // Now that we have some data, let's use some

81) // of the other methods

82) //

83) // First make sure the open works

84) d.close_database () ;

85)

86) doeHistory h = new doeHistory();

87) h.open_database () ;

88) if ('h.isOpen()) {

89) System.out.println ("Unable to open the database");
90) } else {

91)

92) // add a record with a future date

93) //

94) int x;

95) x = h.add_record( "20121003", "13.41");

96) System.out.println( "Result of add " + x);

97) try {

98) h.effectiveDT.put ( "20110830");

99) h.fuelPrice.put ( "29.95");

100) } catch( xBaseJException j) { Jj.printStackTrace();}
101)

102) x = h.add_record();

103) System.out.println( "result of second add " + x);
104)

105) System.out.println( "First 10 in order added");



80 Chapfter [ - Fundamentals

106) h.dump_first_10();

107) System.out.println( "First 10 in descending date order");
108) h.dump_first_10_k1();

109) System.out.println( "First 10 in ascending date order");
110) h.dump_first_10_k0();

111)

112) // Now let us see what keys have actual

113) // data

114) //

115) System.out.println( "\nBefore reIndex\n");

116) System.out.println( "finding 20071010");

117) x = h.find_EQ_record( "20071010");

118) System.out.println( "\nResult of EQ find " + x + "\n");
119) System.out.println( "Date: " + h.effectiveDT.get ()

120) + " Price: " + h.fuelPrice.get());

121)

122) x = h.get_newest ();

123) System.out.println( "Result of get_newest " + x);

124) System.out.println( "Date was: " + h.effectiveDT.get());
125)

126) // Not all keys are updated when using NDX

127) //

128) h.reIndex();

129)

130) System.out.println( "\nAfter reIndex\n");

131) System.out.println( "First 10 in descending date order\n");
132) h.dump_first_10_k1();

133) System.out.println( "\nfinding 20071010");

134) x = h.find_GE_record( "20071010");

135) System.out.println( "\nResult of EQ find " + x + "\n");
136) System.out.println( "Date: " + h.effectiveDT.get ()

137) + " Price: " + h.fuelPrice.get());

138) if ( x == h.DOE_SUCCESS) {

139) x = h.delete_record();

140) System.out.println( "Result of delete " + x + "\n");
141) }

142)

143) x = h.get_newest ();

144) System.out.println( "Result of get_newest " + x);

145) System.out.println( "Date was: " + h.effectiveDT.get());
146)

147) h.close_database();

148) } // end test for successful open

149) }// end test for open dbf

150)

151) } // end main method

152)

153) } // end class testShowMe

This is one of the longer test programs I have provided you. A big part of that is due to the
fact I created a CSV (Comma Separated Value) file called fuel_prices.csv which has lines in it
looking like this:



Chaprer I — Fundamentals 81

20070905,289.
20070912,292.
20070919, 296.
20070926, 303.
20071003, 304.
20071010, 303.
20071017, 303.
20071024, 309.
20071031, 315.
20071107, 330.
20071114, 342.
20071121, 341.
20071128, 344.

DO CTWI»OUlo N W

Actually it has over 100 lines in it, but I' neertainly not going to print it here. If you want,
you can visit the Department of Energy Web site and pull down the spreadsheet which has historic
diesel fuel prices, and create your own file.

In theory I could have done the Util call found at listing line 17 inside of the doeHistory class,
but I didn' have a warm and fuzzy feeling about the actual run-time scope of Util in all situations.
Feel free to experiment on your own with placing this call at various places in the class hierarchy.

Listing lines 26 through 78 serve no other purpose than to read a line from this CSV and load
it as a record in the database. Since I tried to implement localized error handling and provide
meaningful error messages, this code is a lot larger than you will see in most examples which
would simply trap all exceptions at one place and print a stack trace.

We should discuss this code briefly for those who have never tried to read lines in from a text
file before. First you have to create a FileReader object as I did at listing line 33. Once you have
done that you can create a BufferedReader object to read from and buffer the FileReader object
you just created as I did at listing line 40. The second parameter (4096) is an optional buffer size
in bytes. If you do not pass a buffer size, there is some value which gets used by default.

One has to use a BufferedReader object if one wishes to read a line of input at a time as we
do at listing line 46. The readLine() method of a BufferedReader object ensures that we either get
all characters as a String up to the newLine character or the end of the stream. You will not
receive the newLine or end of stream termination character(s) in the String.

After we get done dealing with the potential end of file situation we increment the record
counter then use the really cool split() method provided by the String class. Since we know the
number and order of data in the input file, we can directly put the values into the database fields
and add the record to the database. Roughly 50 lines of code just to get our test data, but now we
have it.



82 Chapter [ - Fundamentals

Listing lines 84 through 147 contain the meat of this test. We need to see the output before
we talk about them, though.

roland@logikaldesktop:~/fuelsurcharge2$ java testDoeHistory

Populating database
End of input file reached
Finished adding 107 records

Result of add 1
result of second add 1
First 10 in order added

20070905 89.300
20070912 92.400
20070919 96.400
20070926 03.200
20071003 04.800
20071010 03.500
20071017 03.900
20071024 09.400
20071031 15.700
20071107 30.300
First 10 in descending date order

20090916 63.400
20090909 64.700
20090902 67.400
20090826 66.800
20090819 65.200
20090812 62.500
20090805 55.000
20090729 52.800
20090722 49.600
20090715 54.200

20070905 89.300
20070912 92.400
20070919 96.400
20070926 03.200
20071003 04.800
20071010 03.500
20071017 03.900
20071024 09.400
20071031 15.700
20071107 30.300

Before relndex
finding 20071010
Result of EQ find 1

Date: 20071010 Price: 03.500



Chaprer I — Fundamentals 83

Result of get_newest 1
Date was: 20090916

After relndex

First 10 in descending date order

20121003 13.410
20110830 29.950
20090916 63.400
20090909 64.700
20090902 67.400
20090826 66.800
20090819 65.200
20090812 62.500
20090805 55.000
20090729 52.800

finding 20071010
Result of EQ find 1

Date: 20071010 Price: 03.500
Result of delete 1

Result of get_newest 1
Date was: 20121003

You should note that the result of both the first add (20121003, 13.41) and the second add
(20110830, 29.95) returned a 1, meaning they were successfully added to the database, yet they
didn' t show up on our initial dump reports. The records don' t show up unufzer 1 call reIndex().

Here is another lovely little tidbit for you. NDX objects don' monitor changes. If, instead of
obtaining the the NDX currently attached to the DBF object, I simply create two new objects and
re-index, those changes will be reflected in the file, but not in our application.

NDX a = new NDX( DEFAULT_KO_NAME, aDB, false);
a.relndex ()
NDX b = new NDX( DEFAULT_K1_NAME, aDB, false);
b.relIndex ()

The code above will not place entries in our index even though the values will be correct on
file. Why? Because the Btree gets loaded into RAM. You have to manipulate the exact same
Btree the database object is using. Make no mistake, a call to reIndex() changes the contents of
the file, but the other loaded view of it does not. Fou stould never, under any circumstances,
attempt to let multiple users have write access to the same DBF for 1his, and many other, reasons.
There is no triggering method in place to keep Btrees in synch because there is no database engine
in place.



84 Chapter [ - Fundamentals

Take another look at listing line 463 in doeHistory.java. I have the uselndex() for the second
key commented out. On page twelve in this book I told you that records could be added to a DBF
file without ever creating an entry in an index file. This test has been a shining example. When
we call open_database() we only open one index. Indeed, the database object doesn' tare if we
choose to not open any. A good many xBASE libraries out there support only reading and
writing of records in xBASE format. They provide no index support whatsoever.

1.12 Programming Assignment 4

This is a multi-part assignment. Your first assignment is to un-comment listing line 463,
recompile and re-run this application. You will note that the first set of dump reports now has the
added records. Can you explain why?

Part 2: Move all of the dump_ methods out of doeHistory.java and make them methods in
testDoeHistory.java. Get them to actually work. DO NOT MAKE THE DBF OBJECT PUBLIC
OR USE A METHOD WHICH PROVIDES A COPY OF IT TO A CALLER. Don' forget to
check for the database being open prior to running. Do not add any new methods to
doeHistory.java.

Part 3: After completing part two, change getNext() to use read() instead of findNext(),
compile and document what, if any, difference there is in the output.

Part 4: After completing part three, add one method to doeHistory.java which uses the
readPrev() method of the DBF class to read the previous record. Clone the dump_first_10_k1()
method you just moved to testDoeHistory.java to a method named dump_last_10_k0(). Without
using the alternate index, get the same 10 records to display.



Chaprer I — Fundamentals 85

1.13 Deleting and Packing

I mentioned much of this information earlier but we are going to go over it again in detail
because it tends to catch most newbies off-guard even after they have been told a hundred times.
Deleting a record in an xBASE file does not physically delete the record (in most versions), nor
does it update any NDX index file information. (A production MDX is a slightly different
situation.)

Basically, each record in a DBF file has an extra byte at the front of it. When that byte is
filled in, usually with an asterisk, the record is considered to be ‘deleted.” Your applications will
continue to read this record and process it unless they call the deleted() method immediately after
reading a record. The deleted() method of the DBF class returns true if the record is flagged for
deletion.

One of the dBASE features general users found most endearing was the ability to ‘und elete”
a record they had accidentally deleted. This feature was possible simply because the record had
not been physically deleted. The DBF class provides an undelete() method for you as well. If you
find a record which has been marked as deleted that you wish to restore, you simply read it and
call undelete().

It is not unusual to find xBASE files which have never had deleted records removed. As long
as a user never hits the 2GB file size limit for a DBF, there is nothing which forces them to get rid
of deleted records. Until you hit a size limit (either maximum file size or run out of disk space),
you can just go happily on your way.

What if you want to get that space back? What if you need to get it back? Well, then you
need to know about the pack() method of the DBF class. Many books will tell you that pack()
removes the deleted records from your database. There may actually be an xXBASE toolset out
there somewhere which actually implements pack() that way. Almost every library I have used
throughout my career does what xBaseJ does. They create a shiny new database with a temporary
file name, copy all of the records which are not flagged for deletion to the temporary database,
close and nuke the original database, then rename/copy the temporary back to where the original
database was. If you are looking to pack() because you are out of disk space, it is probably
already too late for you unless your /tmp or tmp environment variable is pointing to a different
physical disk.

Careful readers will note that I didn' say anything about your index files. pack() couldn' t car
less about them. If you do not re-index your index files or create new index files after calling
pack(), then you are asking for disaster.



86 Chapfter [ - Fundamentals

testpackDoeHistory.java

1)

2) System.out.println( "Finished adding " + 1l_record_count +
3) " records\n");

4) //

5) // Now that we have some data, let's use some

6) // of the other methods

7) //

8) // We need to delete a few records now

9) for ( int i=1; 1 < 20; 1 +=3)

10) d.delete_record( 1);

11)

12) // First make sure the open works

13) d.close_database();

14)

15) // Cheat because I didn't supply the pack method
16) //

17) try |

18) DBF aDB = new DBF (d.DEFAULT_DB_NAME) ;

19) System.out.println( "\npacking the database");
20) aDB.startTop () ;

21) aDB.pack () ;

22) System.out.print ( "\nDatabase has been packed ");
23) System.out.println( "record count " + aDB.getRecordCount());
24) aDB.close () ;

25) } catch( xBaseJException j) {

26) j.printStackTrace();

27) } catch( IOException e) {

28) e.printStackTrace();

29) } catch ( CloneNotSupportedException c) {

30) c.printStackTrace () ;

31) }

32)

33)

34) doeHistory h = new doeHistory();

35) h.open_database () ;

36)

37) if ('h.isOpen()) {

38) System.out.println ("Unable to open the database");
39) } else {

40)

41) // add a record with a future date

42) //

43) System.out.println( "\nadding records with future dates");
44) int x;

45) x = h.add_record( "20121003", "13.41");

46) try |

47) h.effectiveDT.put ( "20110830");

48) h.fuelPrice.put ( "29.95");

49) } catch( xBaseJException j) { j.printStackTrace();}
50)

51) x = h.add_record();

52)

53) x = h.add_record( "20201003", "19.58");

54) x = h.add_record( "20190903", "21.58");

55) x = h.add_record( "20180803", "19.58");

56) x = h.add_record( "20170703", "21.58");

57) X h.add_record( "20160603", "19.58");

58)

59) System.out.println( "First 10 in order added");

60) h.dump_first_10();

61) System.out.println( "First 10 in descending date order");



Chaprer I — Fundamentals 87

62) h.dump_first_10_k1();

63) System.out.println( "First 10 in ascending date order");
64) h.dump_first_10_kO0();

65)

66) // Now let us see what keys have actual

67) // data

68) //

69) System.out.println( "\n\nBefore relIndex\n");

70) System.out.println( "finding 20071010");

71) x = h.find_EQ_record( "20071010");

72) System.out.println( "\nResult of EQ find " + x + "\n");
73) System.out.println( "Date: " + h.effectiveDT.get ()

74) + " Price: " + h.fuelPrice.get());

75)

76) x = h.get_newest ();

77) System.out.println( "Result of get_newest " + x);

78) System.out.println( "Date was: " + h.effectiveDT.get());
79)

80) // Not all keys are updated when using NDX

81) //

82) h.reIndex();

83)

84) System.out.println( "\nAfter relIndex\n");

85) System.out.println( "First 10 in descending date order\n");
86) h.dump_first_10_k1();

87) System.out.println( "\nfinding 20071010");

88) x = h.find_GE_record( "20071010");

89) System.out.println( "\nResult of EQ find " + x + "\n");
90) System.out.println( "Date: " + h.effectiveDT.get ()

91) + " Price: " + h.fuelPrice.get());

92) if ( x == h.DOE_SUCCESS) {

93) x = h.delete_record();

94) System.out.println( "Result of delete " + x + "\n");
95) }

96)

97) x = h.get_newest ();

98) System.out.println( "Result of get_newest " + x);

99) System.out.println( "Date was: " + h.effectiveDT.get());
100)

101) h.close_database();

102) } // end test for successful open

103) }// end test for open dbf

104)

105) } // end main method

I did not provide the beginning of this source file because I didn' feel like re-printing the
code to load the records again. If you want to get this program running you can simply steal the
CSV import code from the previously presented program.

At listing line 9 I created a for loop which will delete records from the database. We only
need a few near the beginning to disappear.

Listing lines 18 through 24 contain the code where I open the database and call pack(). I
cheated here and directly created a database object because I had not added a pack_database()
method to the doeHistory class.



88 Chapfter [ - Fundamentals

You will notice at listing lines 53 through 57 that I chose to add some more records. I just
wanted to make things painfully obvious during the rest of the test. There is nothing really magic
about the values in those records, other than the fact they are easy to spot.

Pay special attention to listing line 82. Do you remember what I said earlier? I deliberately
left this line where it was to prove that statement. Now, let' s take a look at the output.

roland@logikaldesktop:~/fuelsurcharge2$ javac doeHistory.java
roland@logikaldesktop:~/fuelsurcharge2$ javac testpackDoeHistory.java
roland@logikaldesktop:~/fuelsurcharge2$ java testpackDoeHistory

Populating database
End of intput file reached
Finished adding 107 records

packing the database
Database has been packed record count 100

adding records with future dates
First 10 in order added

20070912 92.400
20070919 96.400
20071003 04.800
20071010 03.500
20071024 09.400
20071031 15.700
20071114 42.500
20071121 41.000
20071205 41.600
20071212 32.500
First 10 in descending date order

20160603 19.580
20170703 21.580
20180803 19.580
20190903 21.580
20201003 19.580
20110830 29.950
20121003 13.410
20090916 63.400
20090909 64.700
20090902 67.400
First 10 in ascending date order

20070912 92.400
20070919 96.400
20071003 04.800
20071010 03.500
20071024 09.400
20071031 15.700
20071114 42.500



Chaprer I — Fundamentals 89

20071121 41.000
20071205 41.600
20071212 32.500

Before relndex
finding 20071010
Result of EQ find 1

Date: 20071031 Price: 15.700
Result of get_newest 1
Date was: 20160603

After relndex

First 10 in descending date order

20201003 19.580
20190903 21.580
20180803 19.580
20170703 21.580
20160603 19.580
20121003 13.410
20110830 29.950
20090916 63.400
20090909 64.700
20090902 67.400

finding 20071010
Result of EQ find 1

Date: 20071010 Price: 03.500
Result of delete 1

Result of get_newest 1
Date was: 20201003

Please look at the highlighted lines in the output. When we are done loading the CSV file
into the database there are 107 records. After deleting and packing we have 100 records. Take a
look at the descending date order report. The output is quite obviously trashed. The indexes
haven' t beempdated. They still have values which point to record numbers. The only problem is
that those records no longer contain information which corresponds to the index value.

I need to point out that it is quite possible to crash when using a stale index file against a
recently packed database. You could attempt to read a record number which doesn' exist in the
database. It all really depends on what key you are using and how many records were deleted.

Scan down to the report generated after we called relndex(). Notice that everything is back to
the way you expect it to be.



90 Chapfter [ - Fundamentals

If you use xBASE products long enough, you will eventually find yourself in a situation in
which you need to pack a database. Packing a database is always a gamble. If you are in a
production environment you will simply not know every index file every application created to
view your data the a manner it chose. You also won' have any way to tell those applications they
need to rebuild the index. It is the responsibility of the packer to contact all of the other users, not
just let them crash.

1.14 Programming Assignment 5

Add a pack_database() method to doeHistory(). Don' tjust call pack(), re-index BOTH
indexes. You won' just be able to call reIndex(). If you read that code carefully you will see that
it relies on all index files having been opened and attached already.

1.15 Data Integrity

We touched on this a bit in the last section, but I need to drive the point home now. I don' t
care what xBASE library you use or what language you work in, without a database engine
between every application and the actual data, you cannot and will not have data integrity.

Data integrity is much more than simply keeping indexes in synch with actual data records.
Data integrity involves data rules and you cannot implement rules without an engine, VM, or
some other single access point between the application and the actual data.

Don' wvorry, I' nnot going to bore you with a highly technical rant that sounds like a lecture
on venereal disease. Data integrity is quite easy to explain in layman' s terms.

Let us say that you run a landfill. Every company which has signed a contract with you has
provided a list of truck numbers along with other truck-identifying information. These are the
only trucks allowed to dump at your landfill because the companies will pay for their own trucks
only. You dutifully put all of this information into a DBF file using a unique segmented key of
companyld and truckNum.

With that task out of the way you set about writing your scale ticket application. The inbound
scale operator will pick a truck from the list you provide and key in the truck full (gross) weight.
The system will fill in the date and time before writing the record to the transaction file. After the
truck is dumped, it will pull onto the outbound scale where that operator will pull pick the ticket
record from the list of available tickets based upon the truck number and company. Once the
operator keys in the empty (tare) weight the system will print the ticket and the scale operator will
hand a copy to the driver.



Chaprer I — Fundamentals 91

Have you noticed any problems yet?

You, the developer, had to write an application which enforced data integrity on its own. You
didn' let the scale operator key in truck information, he or she had to pick from a list, presumably
a list you populated from your truck and company database. The outbound scale operator had to
choose one of the currently open tickets to complete.

There is nothing in the environment which would stop a ticket record from getting written to
the ticket database with a truck and company that isn' on the truck and company database. Your
application is providing that data rule, but the next programmer may not be aware of the rule.

Without a database engine providing a single point of access for all users and applications,
there is no method of enforcing integrity rules. There is no requirement that this engine be
relational, it simply needs to provide control and restrict access.

It might seem difficult to understand, but there are people out there in today' sworld paying
hundreds and sometimes thousands of dollars for commercial xBASE products which provide this
very thing. A run-time or virtual machine is installed under a different user ID which owns and
controls all data and index files. The run-time coordinates all access to the data and in many cases
will enforce data integrity rules. Some will even force the rebuilding of index files whenever a
database file is packed.

We aren' tealing with an engine or a single point of access. If your application is going to
have any form of data integrity then you are going to have to code it in.

1.16 Programming Assignment 6

This is more of a “learn it on your own” assignment. Pick any one of the databases we have
covered which has a unique primary key defined. Write or modify a program which adds five
records to that file. After adding five records, make sure the records appear when reporting via
the unique key. Once they are there, delete three of those records, then attempt to add three
records which have the same primary key value.

What happens?
If you manage to get the records added, what happens when you attempt to reIndex()?

How about when you try to undelete?



92 Chapter [ - Fundamentals

1.17 Summary

It should now be obvious that xBaseJ provides a lot of functionality for applications of
limited size and scope. When all you need is an indexed file of some kind for a stand-alone
application this can be a great tool. As you should have learned from the index problems we
covered, it is not for multi-user use. You will find that most xBASE libraries out there only talk
about being multi-user for the data file, not the indexes. In order to gain speed, most of these
libraries load the index file contents into memory.

You can get a lot of speed out of an xBASE file format on today' somputer hardware. Most
of the concepts and original libraries were written to run on dual floppy computers running
4.77TMhz. Later re-implementations of these libraries used less efficient higher level languages,
but most tried to honor the original specifications. Java is not a language known for performance,
but on a machine with a 1Ghz or faster clock speed, it really doesn' t have to be that efficient.

With all that it has going for it, a developer has to remember that xBASE was originally
created to solve a data storage and ordered input problem, not provide the types of data services
we associate with today' selational databases. The original creator could not have realistically
envisioned all of the bastardized uses for this solution people would come up with in the
following decades. Oddly enough, it is the horror stories from implementations that should have
never been signed off on which gave xBASE its somewhat maligned reputation.

You might find it difficult to believe, but next to a CSV (Comma Separated Value) file, a
DBF file is one of the most common methods of data exchange. While some core DBF formats
are widely supported, NDX and MDX files are not widely supported. xBaseJ focuses on
supporting the minimal core of DBF data types along with the memo fields. I don' teally know
why the Picture datatype was supported, unless that was simply fallout from adding Memo field
support.

It would be nice if one or more of you reading this would take it upon yourselves to add
support for Datetime (T) and Autoincrement (+) since those datatypes became rather widely used
in later years. I haven' tesearched either subject, but I imagine that neither type will be easy to
add until support has been added for native Integer (I).

I did not cover MDX support at this time because it doesn' work. Keys are added, but sort
order is not maintained.



Chaprer I — Fundamentals 93

1.18 Review Questions

1.
2.
3.

© =N oW

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.

27.

What two situations force a user or application to physically remove deleted records?

By default, what are string and character fields padded with when using xBaseJ?

If you have a DBF open with NDX files attached to it then call a subroutine which creates
new NDX objects for those same files and calls reIndex() on them, will the changes to the
index files be reflected in the NDX objects you DBF holds? Why or why not?

What two Java classes do you need to use to build create a report line making the data line
up in columns?

How does one tell xBaseJ to pad string and character fields with spaces?

What DBF class method physically removes records from the database?

What is the maximum size of a DBF file?

What DBF class method is used to retrieve a value from a database Field regardless of
field type?

After creating a shiny new DBF object and corresponding data file, what method do you
use to actually create columns in the database?

What DBF class method is used to assign a value to a database Field?

What DBF class method do you call to change the NDX key of reference?

What DBF class method ignores all indexes and physically reads a specific record?

When you delete a database record, is it actually deleted?

What DBF class method sets the current record to zero and resets the current index pointer
to the root of the current index?

What is the main difference between readNext() and findNext()?

What function or method returns the number of records on file?

What happens when you attempt to store a numeric value too large for the column?

What happens when you attempt to store a character value too large for the column?

When accessing via an index, how do you obtain the record occurring before the current
record?

What DBF method returns the number of fields currently in the table?

When retrieving data from a database column, what datatype is returned?

What is the maximum length of a column name for most early xBASE formats?

What does the instanceof operator really tell you?

Are descending keys directly supported by xBaseJ?

What NDX method can you call to refresh index values stored in the NDX file?

What Java String method allows you to split a String into an array of Strings based upon a
delimiting String?

Do NDX objects monitor database changes made by other programs or users?



94 Chapter [ - Fundamentals

28. Can you "undelete" a record in a DBF file? If so, why and for how long?

29. When a Numeric field is declared with a width of 6 and 3 decimal places, how many digits
can exist to the left of the decimal when the field contains a negative value?

30. When do you need to create a finalize() method for your class?

31. What Java class provides the readLine() method to obtain a line of input from a text file or
stream?

32. Do xBASE data files provide any built-in method of data integrity?

33. What must exist, no matter how the data is stored, to provide data integrity?



Chapter 2

Mega-Zillionaire Application

2.1 Why This Example?

Those of you who have read the other books in this series won' te the ones asking this
question. I' manswering this question for the newcomers. Whenever I cover a new language or
tool, I use this application to put the fundamental features through their paces. I try to implement
the application as close as possible to the original implementation covered in ISBN-13
978-0-9770866-0-3.  Besides being a good test application, having the same application
developed over and over again using different tools and languages allows people who own
legitimate copies of this book series to quickly transition between languages, tools, and platforms.

The application is not all that involved. It is a simple lottery tracking system which contains
a primary data file ordered by drawing date and two statistics files ordered by element number.
Admittedly, I used a very broad definition of the term .szzzszzcs since we are simply keeping a few
counts and a couple of percentages. The application does encompass the minimum of what you
need to know about any toolset before you can realistically begin using it. You need to be able to
create a menu, an import utility, an entry screen, a data browsing screen, and some reports. If you
can do all of that, you can pretty much figure everything else out as you go.

Here are the three files:

Drawing Data

Draw_dt Date k0

No_1 Numeric 2

No_2 Numeric 2

No_3 Numeric 2

No_4 Numeric 2

No_5 Numeric 2

Mega_no Numeric 2

Drawing Stats Mega_ Stats

Elm_no Numeric 2 kO Elm_no Numeric 2 kO
Hit_count Numeric 6 Hit_count Numeric 6
Last_draw_no Numeric 6 Last_draw_no Numeric 6
Since_last Numeric 6 Since_last Numeric 6
Curr_seq Numeric 4 Curr_seq Numeric 4
Longest_seq Numeric 4 Longest_seq Numeric 4
Pct_hits Numeric 8,4 Pct_hits Numeric 8,4
Max_btwn Numeric 6 Max_btwn Numeric 6
Ave_btwn Numeric 8,4 Ave_btwn Numeric 8,4



96 Chapter 2 — Mega-Zillionaire Application

Careful readers will notice that the layout for both stats files is the same. When I originally
designed this application I didn' tvant to complicate an application I was going to use for several
introductory texts. Yes, I have enough technical skills to merge both of our stats files into one
with the addition of a ‘type” or ‘flag” byte to segregate the records. Exactly how many people
who are brand new to software development or brand new to the concept of indexed files reading
this (or any) book will have all of the fundamental skills needed to jump right into an application
with a segmented primary key that spans two data types? Some storage systems won' even allow
such a beast to exist.

Hopefully you spent some time working through programming assignment six from Chapter
1. If you did, then regardless of your prior skill level, you have a grasp on how convoluted this
demonstration application would get when trying to create records in the stats files for the nth
time. While it may not be sexy, a design which allows each statistics file to be deleted and created
from scratch each time a user chooses to generate stats is both cleaner and more understandable.
Let' face it: the first program you are assigned in college prints ‘Hello” to the printer, it doesn' t
solve the Tower of Hanoi problem. Eventually you get to the Tower of Hanoi problem, but you
don' t start there.

With the exception of the Logic book, the books in this series have all been aimed at
professional programmers. I didn' wive two full chapters of explanation prior to dropping this
example on them. This book is primarily aimed at people who either have had one programming
course covering Java or have read a ‘Teach Yourself How to Be Totally Useless in 21 Days or
Less” type book and are looking to obtain actual skills. Because of this application the book will
also be useful to anyone who owns the rest of the book series and needs to quickly get up to speed
using xBaseJ, or even Java under Linux.

Unlike prior books in this series, this one is going to describe what the application looks like
first, then we will discuss it. The main menu/form for this application looks much like many
other applications implementing the CUA (Common User Access) interface. It has a main menu
across the top, and those drop down when you click on the entries.



Chapter 2 — Mega-Zillionarre Application

97

A () Mega xBase] Window

@26

Figure 1 Main menu at startup

K © Mega xBase) Window

Figure 2 File menu contents




98 Chaprer 2 — Mega-Zillionaire Application

[ K @ Mega xBase] Window

Figure 3 Report menu contents

Figure 4 Import after file import



Chaprer 2 — Mega-Zillionaire Application 99

When you click on the “Choose File” button in the Import form, some flavor of the File
Chooser window will pop-up. I say ‘some flavor” because it will depend upon what Look and
Feel libraries you have installed. As we will see later, the startup code searches for a couple of
widely known Look and Feel implementations before defaulting to the incredibly ugly Metal
Look and Feel which is the default Java Look and Feel. In case you are wondering, this is the File
Chooser displayed when a Motif-based Look and Feel has been selected. Many people
(developers included) will visit http://www.javootoo.com to pull down various free Look and Feel

packages. You will see how to change the Look and Feel when we cover the test module which
runs this application.

Figure 5 File Chooser used with import

Changing just a couple lines of code in our application (and making sure another JAR file is
included) creates an application which looks like this:


http://www.javootoo.com/

100 Chapter 2 — Mega-Zillionaire Application
|2] ) Mega xBase] Window ©® x |
File Eeport

Mega Zillionare Entry
Drawing Date: |
o [
Mo 2 -
Mo 3 i ]
Mo 4 [ 1
Mo 5 [l
Megame: [ |
Deleted [_
Clear Find Delete Gen Stats oK
<<< < > B
Figure 6 Entry form with Nimrod look and feel
12| ) open ®E ®
Look |n: [E roland w | ﬁ B [E Eﬁ
L) Application_book B bin
Bl b £ blog entries
[} bandwidth [ bn_ebool_cd
) Barn Pics £ bn_ie
L) barn_interior_pics L) book_covers
[ barn_pics_new_camera £ calibre_wark
<= ¥
File Mame; “ ]
Files of Type: | All Files v |
Open Cancel

Figure 7 FileChooser with Nimrod look and feel

You might notice that it isn' bnly the coloring which changes, but the layout and style of
things. The common Java tools like FileChooser also are dramatically different. Not all Look and

Feels are available for all versions of Java.



Chapter 2 — Mega-Zillionarre Application 101

X () Mega xBase] Window

Figure 8 Entry form

One thing which might not be obvious is the “Deleted:” prompt. You cannot enter a value
here, but when a record which has been flagged for deletion is displayed “*”” will display in this
box. Unless you use a lot of VCR-type software the row of buttons containing less-than and
greater-than signs might not be intuitive. A single less-than sign moves towards the beginning,
multiples move to the very beginning. A single greater-than moves towards the end and multiples
move to the very end.

It probably wasn' the best choice of labels, but “OK” performs either an Add or an Update
depending upon which mode you are currently in. There is no button to set the mode per se. If
you find a record via the ‘Find” button or one of the navigation buttons, you will be in find mode.
By default the screen starts out in add mode. If you need to get back to add mode you must
‘Clear,” which will both clear all entries on the screen and reset the screen back to add mode.



102 Chapter 2 — Mega-Zillionarre Application

Figure 9 Browse form

Although it is against my religion to design applications which load every record from a
database into a spreadsheet, that is what end users have come to expect thanks to the world' s
lowest quality software vendor, Microsoft. Nobody with even the tiniest shred of computer
science education would ever consider getting users zse# to seeing data displayed this way. It
works only under the condition which lets it work here: a very limited set of data stored locally
and access read only. I did it because most of you were going to whine and snivel about wanting
to do it.

Most of you reading this book will not have had professional software development training.
I cover this topic quite a bit in the OpenVMS Application Developer book (ISBN-13
978-0-9770866-0-3) and the SOA book (ISBN-13 978-0-9770866-6-5). The spreadsheet design
is horribly inefficient. I' mmot talking about the code to create the spreadsheet itself, I' ntalking
about the concepts behind the design. It is a resource-intensive pig that imposes severe data
access restrictions by requiring either exclusive access to the entire data set, or a live data monitor
communicating with the database to monitor for any and all record changes.



Chapter 2 — Mega-Zillionaire Application 103

The xBASE architecture doesn' tlend itself to multi-user access without an intervening
database engine locking all files and providing all access. We don' have that, so we are already
living in multi-user Hell, and choose to handle the multi-user problem procedurally by not
creating the data files on a server and telling users not to run multiple instances of our application.

It used to be easy to restrict applications to non-network file storage. You had to either be
working at a large corporation or be an Uber Geek yourself to install and configure a Netware file
server in your own small business or home. Then Microsoft came out with their own pathetic
excuse for a Netware replacement, lowering the skill level and exponentially lowering the bar on
quality. Today, even a blind squirrel can find the acorn. For well under $1000 the average user
can buy a network storage device, plug it in, follow a short list of configuration commands, and
have their own file server. Security on these devices tends to be almost non-existent, given that
they are created from a ‘Share everything” viewpoint for non-technical users. Many of these
devices cost under $500 and provide nearly 1TB of storage. Unlike Netware, these file servers
don' tprovide an indexed file system. Btrieve Technologies, Inc. really needs to get into this
personal file server market. There are probably still a lot of tools out there which support Btrieve
and let end users create things by picking and pointing.

Memory and bandwidth issues simply cannot be overlooked when designing an application. I
provided only a few hundred records for our test database and I' nereating the files locally. What
happens when you modify this application to open a DBF and NDX which are on a Web site or
remote file server? Unless you are on dial-up, you probably have enough bandwidth to transfer
fewer than 400 records. How about when the file is approaching 2GB and the end user is on a
satellite connection with a 120MB per day bandwidth restriction? One must always take such
things into consideration when designing an application or applet which could have its data hosted
remotely.

Ordinarily, a screen like the browse screen would be designed to display five to ten records,
and it would have a search prompt. Perhaps the search prompt would also have a combo box
allowing a user to select a search field, otherwise the search would be on the primary key. When
a user clicked on the Search or Find button the application would perform indexed look up logic
against the database and display up to 5 records. While that design may not seem as slick as being
able to drag a scroll bar through a spreadsheet, it works at all resource levels. The poor Schmoe
who was given a corporate desktop running Windows XP with only 256Meg of RAM can use it
just as easily as the power user and their 2+Ghz multi-core CPU with 4GB or RAM.



104 Chapter 2 — Mega-Zillionarre Application

2.2 Supporting Classes

MegaDBF.java

1) package com.logikal.megazillxBasedJ;

2)

3) import Jjava.io.*;

4) import java.util.*;

5) import org.xBaseJ.*;

6) import org.xBaseJ.fields.*;

7) import org.xBaseJ.Util.*;

8) import org.xBaseJ.indexes.NDX;

9

10) public class MegaDBF ({

11)

12) // variables used by the class

13) //

14) private DBF aDB = null;

15)

16) // fields

17) public DateField Draw_Dt = null;

18) public NumField No_1 = null;

19) public NumField No_2 = null;

20) public NumField No_3 = null;

21) public NumField No_4 = null;

22) public NumField No_5 = null;

23) public NumField Mega_No = null;

24)

25) // file names

26) public final String DEFAULT_DB_NAME = "megadb.dbf";
27) public final String DEFAULT_KO_NAME = "megadbkO.ndx";
28)

29) // work variables

30) private boolean continue_flg = true;

31) private boolean dbOpen = false;

32)

33) // result codes

34) public static final int MEGA_SUCCESS =1;
35) public static final int MEGA_DUPE_KEY = 2;
36) public static final int MEGA_KEY_NOT_FOUND = 3;
37) public static final int MEGA_FILE_OPEN_ERR = 4;
38) public static final int MEGA_DEVICE_FULL = 5;
39) public static final int MEGA_NO_CURRENT_REC = 6;
40) public static final int MEGA_DELETE_FAIL = 7;
41) public static final int MEGA_GOTO_FAIL = 8;
42) public static final int MEGA_DB_CREATE_FAIL = 9;
43) public static final int MEGA_INVALID_DATA = 10;
44) public static final int MEGA_END_OF_FILE =11;
45)

46)

47) Sl iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

48) // Method to populate known class level field objects.
49) // This was split out into its own method so it could be used
50) // by either the open or the create.

51) )i i i i i i i i i i i i i il

52) private void attach_fields( boolean created_flg) {
53) try {

54) if ( created_flg) {

55) //Create the fields

56) Draw_Dt = new DateField( "DrawDt");
57) No_1 = new NumField( "Nol", 2, 0);
58) No_2 = new NumField( "No2", 2, 0);
59) No_3 = new NumField( "No3", 2, 0);



Chapter 2 — Mega-Zillionarre Application

No_4 = new NumField( "No4", 2, 0);
No_5 = new NumField( "No5", 2, 0);
Mega_No = new NumField( "MegaNo", 2, 0);

//Add field definitions to database
aDB.addField (Draw_Dt) ;

aDB.addField (No_1);

aDB.addField (No_2) ;

aDB.addField (No_3);

aDB.addField (No_4) ;

aDB.addField (No_5) ;

aDB.addField (Mega_No) ;

} else {
Draw_Dt = (DateField) aDB.getField("Drawdt");
No_1 = (NumField) aDB.getField("Nol");
No_2 = (NumField) aDB.getField("No2");
No_3 = (NumField) aDB.getField("No3");
No_4 = (NumField) aDB.getField("No4");
No_5 = (NumField) aDB.getField("Nob5");
Mega_No = (NumField) aDB.getField("MegaNo");

}

} catch ( xBaseJException j) {
j.printStackTrace () ;
} // end catch
catch( IOException i) {
i.printStackTrace();
} // end catch IOException
} // end attach_fields method

// Method to close the database.
// Don't print stack traces here. If close fails it is
// most likely because the database was never opened.

public void close_database () {
if (!dbOpen)
return;
try {
if (aDB != null) {
aDB.close () ;
dbOpen = false;
}
} catch (IOException i) {}

}// end close_database method

public void create_database () {
try |
//Create a new dbf file
aDB=new DBF (DEFAULT_DB_NAME, true) ;

attach_fields (true);

aDB.createIndex (DEFAULT_KO_NAME, "DrawDt", true, true);

dbOpen = true;

} catch( xBaseJException 7j) {
System.out.println( "xBaseJ Error creating database");
j.printStackTrace () ;

105



106 Chaprer 2 — Mega-Zillionaire Application

123) continue_flg = false;

124) } // end catch

125) catch( IOException i) {

126) System.out.println( "IO Error creating database");
127) i.printStackTrace();

128) continue_flg = false;

129) } // end catch IOException

130) } // end create_database method

131)

132)

133) Sliiiiiisiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
134) // method to retrieve a copy of the DBF object
135) Sl iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
136) public DBF getDBF () {

137) return aDB;

138) } // end getDBF method

139)

140) Sliiiiiisiiiiiiiisiiiiiiiiiiiiiiiiiiiiiiii
141) // Method to test private flag and see
142) // if database has been successfully opened.
143) Sl iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
144) public boolean isOpen () {

145) return dbOpen;

146) } // end ok_to_continue method

147)

148) S i i i i i i i i i i i i iiiiiiiiiii
149) // Method to open an existing database and attach primary key
150) Sl iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
151) public int open_database () {

152) int ret_val = MEGA_SUCCESS;

153)

154) try {

155)

156) //Create a new dbf file

157) aDB=new DBF (DEFAULT_DB_NAME) ;

158)

159) attach_fields( false);

160)

161) aDB.uselIndex ( DEFAULT_KO_NAME) ;

162) dbOpen = true;

163) reIndex () ; // gets around problem with stale index info
164)

165) } catch( xBaseJException j) {

166) continue_flg = false;

167) } // end catch

168) catch( IOException i) {

169) continue_flg = false;

170) } // end catch IOException

171)

172) if (!continue_flg) {

173) continue_flg = true;

174) System.out.println( "Open failed, attempting create");
175) create_database () ;

176) }// end test for open failure

177)

178) if (isOpen{())

179) return MEGA_SUCCESS;

180) else

181) return MEGA_FILE_OPEN_ERR;

182) } // end open_database method

183)

184) Ll iiiiiiiiiiiiiiisiiiiiiiiiiiiiiiiiiiiiiii

185) // Method to re-index all of the associated index files.



Chapter 2 — Mega-Zillionarre Application

186) //rlllrlllrlllrrl/rrl/rlllrlllrlrlrrl/rrl/

187) public void relIndex () {

188) if (aDB != null) {

189) if (isOpen()) {

190) try {

191) NDX n = null;

192) for (int i=1; i <= aDB.getIndexCount (); i++)

193) n = (NDX) aDB.getIndex( 1i);

194) n.relndex () ;

195) }

196) } catch( xBaseJException 7j) {

197) j.printStackTrace () ;

198) } // end catch

199) catch( IOException i) {

200) i.printStackTrace();

201) }// end catch IOException

202) } // end test for open database

203) }// end test for initialized database object

204) } // end relIndex method

205)

206) public int find_EQ record( String d) {

207) int ret_val = MEGA_SUCCESS;

208) boolean perfect_hit;

209)

210) if (!dbOpen)

211) return MEGA_FILE_OPEN_ERR;

212)

213) try |

214) perfect_hit = aDB.findExact( d);

215) if ( !perfect_hit) {

216) System.out.println( "missed");

217) System.out.println( "Current Record " +
aDB.getCurrentRecordNumber () ) ;

218) ret_val = MEGA_KEY_NOT_FOUND;

219) }

220) } catch( xBaseJException j) {

221) System.out.println( j.getMessage());

222) ret_val = MEGA_KEY_NOT_FOUND;

223) } // end catch

224) catch( IOException i) {

225) ret_val = MEGA_KEY_NOT_FOUND;

226) }// end catch IOException

227)

228) return ret_val;

229) } // end find_EQ_record method

230)

231) public int find GE_record( String d) {

232) int ret_val = MEGA_SUCCESS;

233)

234) if (!dbOpen)

235) return MEGA_FILE_OPEN_ERR;

236)

237) try |

238) aDB.find( d);

239) } catch( xBaseJException j) {

240) ret_val = MEGA_KEY_NOT_FOUND;

241) } // end catch

242) catch( IOException i) {

243) ret_val = MEGA_KEY_NOT_FOUND;

244) } // end catch IOException

245)

246) return ret_val;

247) } // end find_GE_record method

{

107



108 Chaprer 2 — Mega-Zillionaire Application

248)
249) '} // end class MegaDBF

This is a good example of the farthest most of you will go when writing your own classes for
application re-use, be it re-use within the application or other applications. Once again you will
see the open, close, and create methods have been provided. A hidden attach_fields() method
ensures we always have the same field names. At the end of the source listing I added methods to
find a matching key and find a key which is greater than or equal to a provided key value. I did
not provide methods for deletion, but I did provide the relndex() method. The nice thing about
the relndex() method is that you will probably cut and paste it into every DBF class you create.
As long as you make the DBF variable name aDB this method will always work for you.

Listing lines 56 through 62 might just provide some interesting confusion. I chose the
externally visible column names deliberately. They are consistent with the names used in the
other books of this series. Given the naming restrictions XBASE enforces on column names, you
will note that the actual physical column names don' match the externally visible. I did not want

[T3EL)

to experiment with trying to make the character work as a column name. Some character sets

@ 9

for some countries use the as the ‘delete” character. I ran into this years ago. When I' m

(T3]

working with something like a relational engine I will use the in a column name. The engine

protects me from the possibility of the character set changing.

We should discuss listing line 163 before moving on. I would like to say I originally
designed this application in such a way as to insulate it from changes made by others. That was
my original intention. I, however, did not originally have the reIndex() being called on each open.
I had to do this because of a bug in the xBaseJ library which apparently I introduced while fixing
another bug. Thankfully the original developer ran the debugger on an example I provided and
found where things went bad. When you initially opened an NDX file, something was not loaded
correctly with the index. You can get around this problem by moving a value, any value, to the
Field object named in the key, or you can call relndex(). Calling relndex() at the time of open
won' be a big burden on most applications having fewer than 5000 records. Today' somputer
speeds are fast enough that you probably won' éven notice. Unless you are the only person using
your application on your computer, you should always call relndex() after opening an existing
NDX file anyway.

StatElms.java

1) package com.logikal.megazillxBased;

2)

3) public class StatElms extends Object {

4) public int elmNo, hitCount, lastDrawNo, sincelast, currSeq,
5) longestSeq, maxBtwn;

6) public double pctHits, aveBtwn;

7) } // end StatElms class



Chapter 2 — Mega-Zillionaire Application 109

Other than changing the package name, this source file is unchanged from how it appeared in
other books in the series. If you are unfamiliar with the shortcomings of Java, this class file will
help point them out. When generating statistics, we need an array to hold a bunch of values.
Some of these values are updated each time a number occurs in a drawing, others are updated
only once we have processed all drawing records. Every 3GL the book series covers allows us to
declare a record/structure containing only these fields, then create an array of that structure. Java
doesn' tinderstand the concept of records or data structures, as it is completely Object Oriented.
OOP is good for some things, but for most standard data processing tasks, it fails. When you need
a limited number of records containing a handful of fields OOP fails rather spectacularly.
Ultimately, the contents of this array get written to one of the two statistics databases.

StatDBF.java

1) package com.logikal.megazillxBasedJ;

2)

3) import java.io.*;

4) import java.util.*;

5) import org.xBaseJ.*;

6) import org.xBaseJ.fields.*;

7) import org.xBaseJ.Util.*;

8) import org.xBaseJ.indexes.NDX;

9)

10) public class StatDBF {

11)

12) // variables used by the class

13) //

14) private DBF aDB = null;

15)

16) // fields

17) public NumField Elm_No = null;

18) public NumField Hit_Count = null;

19) public NumField Last_Draw_No = null;

20) public NumField Since_Last = null;

21) public NumField Curr_Seq = null;

22) public NumField Longest_Seqg = null;

23) public NumField Pct_Hits = null;

24) public NumField Max_Btwn = null;

25) public NumField Ave_Btwn = null;

26)

27) // file names

28) public String DEFAULT_DB_NAME = null;

29) public String DEFAULT_KO_NAME = null;

30)

31) // work variables

32) private boolean continue_flg = true;

33) private boolean dbOpen = false;

34)

35) // result codes

36) public static final int MEGA_SUCCESS =1;
37) public static final int MEGA_DUPE_KEY = 2;
38) public static final int MEGA_KEY_NOT_FOUND = 3;
39) public static final int MEGA_FILE_OPEN_ERR = 4;
40) public static final int MEGA_DEVICE_FULL = 5;
41) public static final int MEGA_NO_CURRENT_REC = 6;
42) public static final int MEGA_DELETE_FAIL = 7;
43) public static final int MEGA_GOTO_FAIL = 8;



Chapter 2 — Mega-Zillionaire Application

public static final int MEGA_DB_CREATE_FAIL = 9;
public static final int MEGA_INVALID_DATA = 10;
public static final int MEGA_END_OF_FILE = 11;

// Method to populate known class level field objects.
// This was split out into its own method so it could be used
// by either the open or the create.

private void attach_fields( boolean created_flg) {

try {
if ( created_flg)

//Create the fields

Elm_No
Hit_Count
Last_Draw_No
Since_Last
Curr_Seq
Longest_Seq
Pct_Hits
Max_Btwn
Ave_Btwn

= new NumField (
= new NumField (
= new NumField (
= new NumField (
= new NumField( "CurrSeq",
= new NumField (
= new NumField(
= new NumField (
= new NumField (

"ElmNo", 2, 0);
"HitCount", 6, 0);
"LstDrwNo", 6, 0);
"SinceLst", 6, 0);

4, 0);
"LngstSeq", 4, 0);
"PctHits", 8, 4);
"MaxBtwn", 6, 0);
"AveBtwn", 8, 4);

//Add field definitions to database
aDB.addField (E1lm_No) ;
aDB.addField (Hit_Count) ;
aDB.addField(Last_Draw_No);
aDB.addField (Since_Last);
aDB.addField (Curr_Seq);

aDB.addField (Longest_Seq);

aDB.addField (Pct_Hits);
aDB.addField (Max_Btwn) ;
aDB.addField (Ave_Btwn) ;

} else {

Elm_No =
Hit_Count =
Last_Draw_No =
Since_Last
Curr_Seqg
Longest_Seq
Pct_Hits =
Max_Btwn =
Ave_Btwn =

}

(NumField)
(NumField)
(NumField)
(NumField)
(NumField)
(NumField)
(NumField)
(NumField)
(NumField)

} catch ( xBaseJException j) {
j.printStackTrace();

}// end catch

catch( IOException i) {
i.printStackTrace();
} // end catch IOException
} // end attach_fields method

aDB.
aDB.
aDB.

aDB

aDB.
abDB.

aDB

aDB.
aDB.

getField ("ElmNo") ;
getField ("HitCount") ;
getField ("LstDrwNo") ;
.getField("SinceLst");
getField("CurrSeq");
getField ("LngstSeq") ;
.getField ("PctHits");
getField ("MaxBtwn") ;
getField ("AveBtwn") ;

// Method to close the database.
// Don't print stack traces here. If close fails it is
// most likely because the database was never opened.

public void close_database () {

if (!dbOpen)
return;



Chapter 2 — Mega-Zillionarre Application

107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)
145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)
160)
161)
162)
163)
164)
165)
166)
167)
168)
169)

try {
if (abB != null) {
aDB.close () ;
dbOpen = false;
}
} catch (IOException i) {}

} // end close_database method

public void create_database( String dbf_name) {
try {
// Define default names
DEFAULT_DB_NAME = dbf_name + ".dbf";
DEFAULT_KO_NAME = dbf_name + "kO.ndx";

//Create a new dbf file
aDB=new DBF (DEFAULT_DB_NAME, true) ;

attach_fields (true);

aDB.createIndex (DEFAULT_KO_NAME, "ElmNo", true, true);
dbOpen = true;
} catch( xBaseJException j){
System.out.println( "xBaseJ Error creating database");
j.printStackTrace();
continue_flg = false;
} // end catch
catch( IOException i) {
System.out.println( "IO Error creating database");
i.printStackTrace();
continue_flg = false;
}// end catch IOException
} // end create_database method

4
public DBF getDBF () {
return aDB;
} // end getDBF method

// Method to test private flag and see

// if database has been successfully opened.
i i i i i i i i i i i i i il
public boolean isOpen () {

return dbOpen;
} // end ok_to_continue method

public int open_database( String dbf_name) {
int ret_val = MEGA_SUCCESS;

// Define default names
DEFAULT_DB_NAME = dbf_name + ".dbf";
DEFAULT_KO_NAME = dbf_name + "kO.ndx";

111



112

170)
171)
172)
173)
174)
175)
176)
177)
178)
179)
180)
181)
182)
183)
184)
185)
186)
187)
188)
189)
190)
191)
192)
193)
194)
195)
196)
197)
198)
199)
200)
201)
202)
203)
204)
205)
206)
207)
208)
209)
210)
211)
212)
213)
214)
215)
216)
217)
218)
219)
220)
221)
222)
223)
224)

Chapter 2 — Mega-Zillionaire Application

try {

//Create a new dbf file
aDB=new DBF (DEFAULT_DB_NAME) ;

attach_fields( false);

aDB.useIndex ( DEFAULT_KO_NAME) ;
reIndex () ;

dbOpen = true;

reIndex () ;

} catch( xBaseJException 7j) {
continue_flg = false;
} // end catch
catch( IOException i) {
continue_flg = false;
} // end catch IOException

if (!continue_flg) {
continue_flg = true;
System.out.println( "Open failed, attempting create");
create_database ( dbf_name);

} // end test for open failure

if (isOpen())
return MEGA_SUCCESS;
else
return MEGA_FILE_OPEN_ERR;
}// end open_database method

rrr
public void relIndex ()
{

if (aDB != null)
if (isOpen()) |
try {
NDX n = null;
for (int i=1; i <= aDB.getIndexCount (); i++) {
n = (NDX) aDB.getIndex( i);

n.relndex();
}
} catch( xBaseJException j) {
j.printStackTrace();
}// end catch
catch( IOException i) {
i.printStackTrace();
} // end catch IOException
} // end test for open database
} // end test for initialized database object
} // end relIndex method

} // end class StatDBF

You will notice that I didn' provide methods to find individual records via a key. I did

provide the getDBF() method so a user of the class could do most of what he or she wanted.

There was a relndex() method provided to facilitate working around the previously mentioned

bug, but otherwise, this class is pretty basic.



Chapter 2 — Mega-Zillionaire Application 113

Please allow me to direct your attention to listing lines 119 through 123 and 163 through 168.
You may recall that both statistics files have exactly the same layout. (If you don' tecall this
please flip back to the first page of the chapter and look at the proposed record layouts again.) The
only good way of re-using a database class under those conditions is to make the open and create
methods set the file names for the class.

As you progress in your professional career you will encounter many OOP programmers who
consider a class operating in this manner complete sacrilege. They would be wrong. They would
also not be production programmers. Please do not confuse someone who is always working on
new development with someone who is a production programmer. New-development-only
people create the mess production people have to clean up.

Classes which require a file name at the time of object creation and/or open a database/file
resource at that time are two of the main hallmarks of bad application design. They seem oh-so-
politically-correct when you are sitting there in school doing your homework, but they are a train
wreck waiting to happen in real life. Please take a good look at the top of this source file where
the data which will be global for the class instance is declared. Do you see a constructor
anywhere after that global data which forces a file name to be supplied? For that matter, do you
see a constructor declared?

Some of you are going to take the opportunity to open the source for the DBF class, or flip to
the back of this document and point to the constructor documentation and cry foul. You aren' t
pointing out my error when you do that, you are pointing out the fact that you do not understand
the difference between application design and library design. In particular, low-level library
design. Why do you think the four example programs provided with the library itself are so hard
coded and have to be run in a specific order? This is a low-level library, at least as far as xBASE
access is concerned. While it hides some of the ugly details from you, it certainly doesn' provide
much in the way of high-level interfaces.

I have seen C/C++ code generators which take a list of fields along with their data types and a
list of index components, then generate a complete class for you. That class doesn' allow any
low-level access to any portion of the data storage. Each field has its own uniquely named get()
and set() methods and each key has its own find EQ, GT, LT methods. In many cases, the
developer using the class has no idea where the data is stored or how it is stored. In effect, it is
like those I/O modules I told you about earlier. The theory behind them is that the data storage
could be changed without anyone having to change the application in any way. It never works in
practice, but it is a nice theory.



114 Chapter 2 — Mega-Zillionarre Application

You are the one responsible for creating the level of abstraction necessary for your project. It
is up to you to decide the definition of ‘tcode re-use” in your environment.

Some of you will be hard-core coders who think that cutting and pasting from inside the
editor is what the industry means when they say ‘code re-use.” Your view is that if only you
know all of the modules a particular piece of code has been pasted into, then you can never be
fired. You would be wrong, but that would be your view.

Others reading this book will take it upon themselves to write a database class generator like
the one I described. You will also include extract_to() and copy() methods to allow developers to
generate CSV files and safety copies of data. The stars may align and you may choose to add
your creation to the project, thus improving it.

Most of you will fall someplace in the middle of those two extremes. If you hadn' found a
copy of this book you would have probably tried to stumble through via the cut and paste method,
but now you have some file-based DBF classes as a starting point. They will start out as direct
copies or just subsets of the classes I have provided, but as your coding and needs increase, so will
the “default” methods you provide. You will eventually come to realize that the real value of this
book isn' t just the library explanation, but the instructionsoncerning how to design applications.

MegaXDueElms.java

1) package com.logikal.megazillxBased;
2)
3) import java.util.*;
4)
5)
6) import com.logikal.megazillxBaseJ.StatElms;
7)
8) public class MegaXDueElms extends StatElms
9) implements Comparable {
10)
11) //
12) // method to cause sort in Descending order
13) // based upon how many drawings it has been since
14) // it hit. Number is only "due" if it is past its average.
15) //
16) public int compareTo( Object 02) {
17) MegaXDueElms s2 = (MegaXDueElms) o02;
18) double ol_value, o2_value;
19) int ret_val=0;
20)
21) ol_value = this.aveBtwn - this.sincelast;
22) 02_value = s2.aveBtwn - s2.sincelast;
23)
24) if ( o2_value > ol_value)
25) ret_val = 1;
26) else if ( o02_value < ol_value)
27) ret_val = -1;
28)
29) return ret_val;
30) } // end compare method
)



Chapter 2 — Mega-Zillionaire Application 115

32) public boolean equals( MegaXDueElms m) {

33) boolean ret_val = false;

34)

35) if (this.elmNo == m.elmNo)

36) if (this.hitCount == m.hitCount)

37) if (this.lastDrawNo == m.lastDrawNo)

38) if (this.sincelast == m.sincelast)

39) if (this.currSeq == m.currSeq)

40) if (this.longestSeq == m.longestSeq)
41) if (this.maxBtwn == m.maxBtwn)
42) ret_val = true;

43)

44) return ret_val;

45) }// end equals method

46)

47) '} // end MegaXDueElms class

You didn' t really think I was going to let you off with only one rant about the shortcomings of
OOP, did you? I must admit that in Java 1.6 things got a bit better, but you can' simply code in
Java 1.6 since Java 1.4 is still the most widely used in the field. Because of that, I had to extend
the StatElms class just to create a class which could implement the Comparable interface.
Technically I didn' thave to code the equals() method since I didn' tall it, but compareTo() is
required.

The major downside to this design is that I have to create a separate class for every sort order
needed. I' mmot talking about an individual sort compare function for each order, but an actual
class that I create an array of and load data into.

Some documentation claims that the Comparator interface started with 1.4.2. It may have,
but on my machine I couldn' get it to compile when using the 1.4 switch. A Comparator object
would have allowed me to have a separate object for each sorting of the StatElms array, but would
not require different arrays and copies of data. In that case, the class would have encompassed
about as much code, but you would have had less work to do with your assignments later in this
chapter. Had we been using version 5 or higher we could have done this.



116 Chapter 2 — Mega-Zillionarre Application

DueSortCompare.java

1) package com.logikal.megazillxBasedJ;

2)

3) import java.util.*;

4)

5)

6) import com.logikal.megazillxBaseJ.StatElms;

7)

8)  //iiiiiiiiiiiiiiiiiiii

9 // EXAMPLE ONLY

10) // Code not actually used in application

1)y J/iieiiiiiiiiiiiiiiiii

12) public class DueSortCompare

13) implements Comparator<StatElms> {

14)

15) //

16) // method to cause sort in Descending order
17) // based upon how many drawings it has been since
18) // it hit. Number is only "due" if it is past its average.
19) //

20) public int compare( StatElms sl, StatElms s2) {
21) double ol_value, o2_value;

22) int ret_val=0;

23)

24) ol_value = sl.aveBtwn - sl.sincelast;
25) 02_value = s2.aveBtwn - s2.sincelast;
26)

27) if ( o2_value > ol_value)

28) ret_val = 1;

29) else if ( o2_value < ol_value)

30) ret_val = -1;

31)

32) return ret_val;

33) }// end compare method

34)

35) } // end DueSortCompare class

The call to Arrays.sort() would have had the Comparator object provided as an additional
parameter rather than expecting the object array to implement the Comparable interface. It is hard
to show just how resource-intensive this shortcoming is without having an application that already
squeezes system resources and needing the data sorted multiple ways. What if the data file which
fed this array was over 1GB in size and we needed to sort it three different ways for a report?
Even if we directly copied from one array element to another, we would consume at least 2GB of
RAM making the copy, then we would have to /Zgpe garbage collection quickly got around to
reclaiming the original array so we could make our next copy. This, of course, assumes that we
had at least 2GB of RAM available to the Java VM.

I didn' wse the equals() method in this application, but we should talk about it a bit. Some of
you may be horrified to see if statements nested that deep, but, in truth, it is the simplest way to
implement such a method. If any one of those fields didn' match, we could stop looking. You
may have noticed that I omitted checking either of the double fields for being equal, but did you
hazard a guess as to why?



Chapter 2 — Mega-Zillionaire Application 117

Java isn' t perfect language. The VM brings with it much of the baggage we have seen
throughout the years with floating point numbers. True, it reduced the problem to exactly two
floating point implementations, float and double. It is also true that those two data types use two
different IEEE standards to help reduce problems with porting the VM to various platforms. Even
given all of that, we still have floating point baggage to deal with. (A language called DIBOL
used Binary Coded Decimal or BCD to do floating point math while early xBASE formats stored
everything in character format to completely sidestep the issue.)

The main baggage problem we have to deal with is the fact that 1.234 will not equal 1.234
most of the time. The IEEE floating point standards are approximations. They introduce
precision errors and rely on rounding rules of the output utilities to correct these errors.
Depending upon how you arrived at 1.234 it may be 1.2344123 or 1.2344389. To us humans it
will be displayed as 1.234, but, to a binary equality test like == the two values are not equal.

You don' know enough about the application yet, but pctHits and AveBtwn are calculated
based upon the total number of drawings and the integer values we have already tested. The total
number of drawings will be an integer which is the same for all elements and is not stored on the
file. The beauty of this reality is that we only have to compare the integers to see if the elements
match.

Our MegaXDueElms array is used to calculate the values of our Due report. I have not
provided a screen shot of this report, but we will discuss its logic anyway.

2.3 The Panels

MegaXbaseDuePanel.java

1) package com.logikal.megazillxBasedJ;
2)
3)
4) import java.awt.*;
5) import java.awt.event.*;
6) import javax.swing.*;
7) import java.util.*;
8) import java.text.*;
9) import java.lang.Integer;
10)
11) import org.xBaseJ.*;
12) import org.xBaseJ.fields.*;
13) import org.xBaseJ.Util.*;
14)
15) import com.logikal.megazillxBaseJ.MegaXDueElms;
16) import com.logikal.megazillxBaseJ.StatDBF;
17)
18) // You need to import the java.sql package to use JDBC
19) //
20) import Jjava.sgl.*;
21) import java.io.*;
)



Chapter 2 — Mega-Zillionaire Application

public class MegaXbaseDuePanel extends JPanel

implements ActionListener ({

public final int ELM_COUNT = 57; // hghest number is 56 but I don't
// feel like messing with zero

private JPanel mainPanel;

private JScrollPane sp;

private JButton refreshButton;

private JTextArea dueRptArea;

public MegaXbaseDuePanel ( ) {
mainPanel = new JPanel( new GridBagLayout());
GridBagConstraints gbc = new GridBagConstraints();

// Add our refresh button first

// This way we have an object to find the root panel of
//

JPanel buttonPanel = new JPanel ();

refreshButton = new JButton ("Refresh");
refreshButton.addActionListener ( this);

buttonPanel.add( refreshButton, BorderLayout.NORTH) ;
gbc.anchor = GridBagConstraints.NORTH;
gbc.gridwidth = GridBagConstraints.REMAINDER;
mainPanel.add( buttonPanel, gbc);

dueRptArea = new JTextArea();

// Gives you a fixed width font.

dueRptArea.setFont (new Font ("Courier", Font.PLAIN, 12));
dueRptArea.setEditable( false);
dueRptArea.setTabSize (4);
dueRptArea.setColumns ( 80);
dueRptArea.setRows (120) ;
dueRptArea.setDoubleBuffered( true);

sp = new JScrollPane( dueRptArea);
sp.setPreferredSize( new Dimension( 500, 300));

mainPanel.add( sp);

add (mainPanel) ;

setVisible( true);
}// end constructor

public void actionPerformed (ActionEvent event) {
System.out.println( "Entered action event");
generateReport () ;

} // end actionPerformed method

private void generateReport () {
StatDBF dDB = new StatDBF () ;



Chapter 2 — Mega-Zillionaire Application 119

86) StatDBF mDB = new StatDBF();

87) MegaXDueElms d_elms[] = new MegaXDueElms [ELM_COUNT];

88) MegaXDueElms m_elms[] = new MegaXDueElms[ELM_COUNT];

89) //

90) // These are needed to format the detail lines on the report

91) //

92)

93) dueRptArea.setText (""); // clear out in case this isn't first run

94)

95) try {

96) // load the array

97) dDB.open_database ("drawst") ;

98) for (int i=1; i < ELM_COUNT; i++) {

99) dDB.getDBF () .gotoRecord( 1i);

100)

101) d_elms[i] = new MegaXDueElms () ;

102)

103) d_elms[i] .elmNo = Integer.parselnt (dDB.Elm_No.get () .trim());

104) d_elms[i].hitCount = Integer.parselnt (dDB.Hit_Count.get
() .trim());

105) d_elms[i].lastDrawNo = Integer.parselnt (dDB.Last_Draw_No.get
() .trim());

106) d_elms[i].sincelast = Integer.parselnt (dDB.Since_Last.get
() .trim());

107) d_elms[i].currSeg = Integer.parselnt (dDB.Curr_Seqg.get ().trim
)i

108) d_elms[i].longestSeq = Integer.parselnt (dDB.Longest_Seqg.get
() .trim());

109) d_elms[i] .maxBtwn = Integer.parselnt (dDB.Max_Btwn.get () .trim
)i

110) d_elms[i].pctHits = Double.parseDouble (dDB.Pct_Hits.get
() .trim());

111) d_elms[i] .aveBtwn = Double.parseDouble (dDB.Ave_Btwn.get ());

112) }

113)

114) System.out.println("Finished loading array");

115) // finished with this database

116) dDB.close_database () ;

117)

118) // Sort the array.

119) Arrays.sort( d_elms, 1, ELM_COUNT-1);

120)

121) // generate report

122) DateFormat heading_format = DateFormat.getDateInstance
( DateFormat.SHORT) ;

123) NumberFormat nf_elm = NumberFormat.getInstance();

124) NumberFormat nf_hits = NumberFormat.getInstance();

125) NumberFormat nf_since = NumberFormat.getInstance();

126) NumberFormat nf_pct = NumberFormat.getInstance();

127) NumberFormat nf_ave = NumberFormat.getInstance();

128)

129) nf_elm.setMinimumIntegerDigits (2);

130) nf_pct.setMinimumFractionDigits (3);

131) nf_ave.setMinimumFractionDigits (3);

132)

133) Calendar c = Calendar.getInstance();

134) // obtain current date

135) //

136) c.setTime ( new Jjava.util.Date());

137)

138) dueRptArea.append( "Date: " + heading_ format.format ( c.getTime ()

139) + "\n "



120

140)
141)
142)

143)
144)

145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)
160)
161)
162)

163)
164)
165)
166)
167)
168)
169)
170)
171)
172)
173)
174)

175)
176)
177)
178)
179)
180)
181)
182)
183)
184)
185)
186)
187)
188)

189)
190)

Chapter 2 — Mega-Zillionaire Application

+ "Due NumbersReport\n");

dueRptArea.append ("\n Regular

Drawing Numbers\n\n");

\n");
\n");

\n");

dueRptArea.append (" NO Hits Since Pct_Hits Ave_Btwn

dueRptArea.append (" —-- - - == =

String detail_line=null;
int 1_x = 1;
while ( 1_x < ELM_COUNT ) {
if ((double)d_elms[l_x].sincelLast > d_elms[l_x].aveBtwn) {
detail_line = " " + nf_elm.format( d_elms|[ 1_x].elmNo)
" " + nf_hits.format( d_elms[ 1_x].hitCount)
+ nf_since.format ( d_elms[l_x].sincelLast)
+ nf_pct.format ( d_elms[ 1_x].pctHits)
+ nf_ave.format ( d_elms|[ 1_x].aveBtwn)

+ 4+

ll\n";
dueRptArea.append( detail_line);
}
1_x++;
} // end while loop

dueRptArea.append( "\n\n");
dueRptArea.append( "\n\n \n

updateText () ;

// load the array

mDB.open_database ( "megast");

for (int i=1; i < ELM_COUNT; i++) {
mDB.getDBF () .gotoRecord( 1i);
m_elms[i] = new MegaXDueElms () ;
m_elms([i].elmNo = Integer.parselnt (mDB.Elm_No.get () .trim());
m_elms[i] .hitCount = Integer.parselnt (mDB.Hit_Count.get
m_elms[i].lastDrawNo = Integer.parselnt (mDB.Last_Draw_No.get
m_elms[i].sincelast = Integer.parselnt (mDB.Since_Last.get
m_elms[i].currSeq = Integer.parselnt (mDB.Curr_Seqg.get () .trim
m_elms[i].longestSeq = Integer.parselnt (mDB.Longest_Seqg.get
m_elms[i] .maxBtwn = Integer.parselnt (mDB.Max_Btwn.get ().trim

m_elms[i].pctHits = Double.parseDouble (mDB.Pct_Hits.get

m_elms[i].aveBtwn = Double.parseDouble (mDB.Ave_Btwn.get

// finished with this database
mDB.close_database();

// Sort the array.
Arrays.sort( m_elms, 1, ELM_COUNT-1);

// generate report



Chapter 2 — Mega-Zillionaire Application 121

191)

192) dueRptArea.append( "Date: " + heading_ format.format ( c.getTime ()
)

193) + "\n "

194) + "Due NumbersReport\n");

195)

196) dueRptArea.append ("\n Mega
Numbers\n\n") ;

197) dueRptArea.append (" NO Hits Since Pct_Hits Ave_Btwn
\n") ;

198) dueRptArea.append (" -- - == —m————=
\n");

199)

200) 1. x =1;

201) while ( 1_x < ELM_COUNT ) {

202) if ((double)m_elms([1l_x].sincelLast > m_elms[l_x].aveBtwn) {

203) detail_line = " " + nf_elm.format ( m_elms|[ 1_x].elmNo)

204) + " " 4+ nf_hits.format( m_elms|[ 1_x].hitCount)

205) + " " 4+ nf_since.format( m_elms[l_x].sincelLast)

206) + " " + nf _pct.format( m_elms[ 1_x].pctHits)

207) + " " + nf_ave.format ( m_elms[ 1_x].aveBtwn)

208) + "\n";

209) dueRptArea.append( detail_line);

210) }

211) 1_x++;

212) } // end while loop

213)

214) dueRptArea.append( "\n\n");

215) dueRptArea.setCaretPosition(0); // scroll back to top

216) } catch (xBaseJException x) {

217) } catch (NumberFormatException n) {

218) n.printStackTrace () ;

219) } catch (IOException e) {

220) }

221)

222) }// end generateReport method

223)

224) public void updateText () {

225) mainPanel.invalidate();

226) mainPanel.validate();

227) mainPanel.paintImmediately ( mainPanel.getVisibleRect ());

228) mainPanel.repaint () ;

229) } // end updateText method

230)

231)

232) } // end MegaXbaseDuePanel class

You will be getting two assignments based upon this module, so I' mgoing to take the
discussion a bit slower than I have been for the other modules. With the exception of the import
function, all of the other menu options are implemented as panels which display on the main
menu panel using CardLayout. The CardLayout allows you to stack 1-N panels on top of each
other like a deck of cards which are face up. You then shuffle the card you want to the top of the
face up deck so it is displayed. All of the other cards are left in their current state when you
change the displayed card. When you choose to re-display one of the cards you do not create a
new instance of it or re-initialize its contents in any way; it is simply shown again as it was last
seen.



122 Chapter 2 — Mega-Zillionarre Application

Each panel which gets placed into the CardLayout can, and does, have its own layout. It
could actually have many different layouts on it, but we have only one layout in use because we
don' t have much to display.

This particular panel has only a refresh button to display at the top of the screen and a text
area which gets displayed inside of a scroll pane. In truth, it looks much like the browse screen
snapshot I' veprovided you, only it has regular text instead of a spreadsheet inside of the scroll
pane.

Our panel uses a GridBagLayout. Don' sk me to tell you where the name came from or all
of the details. GridBaglLayout is one of the few functional layouts existing in Java, at least in the
days of version 1.4. The topic of layouts has become so heated and debated that the C++ cross
platform GUI library named Qt has released a Java wrapper for its library and many Java
developers have begun migrating away from Swing. When it comes to the subject of layout
managers and Java, it looks like the subject was ‘tabled until later” and later still hasn' t come.

You position objects in a GridBagLayout via a GridBagConstraints object. Ordinarily you
will fill in only the anchor and gridwidth values, leaving the rest of the GridBagConstraints fields
at their default values. Normally gridwidth is a numeric constant such as 1 or 2, but it can be a
couple of ‘special” values. One such value is REMAINDER as shown on listing line 52. This
tells the layout manager the object is the last one on the current line of objects it is building.

The anchor portion of GridBagConstraints has a lot of direction-sounding constants, which
can be a little confusing. Most people assume that all of the NORTH-based constraints have
something to do with the top of the display and the SOUTH-based constraints have something to
do with the bottom of the display. In general, this is true, but not as true as it sounds. To start
with, the enclosing object, in this case our JPanel, can change the component orientation and
instead of left-to-right-top-to-bottom the screen might be displayed right-to-left-bottom-to-top. In
any case, NORTH is associated with the starting point and SOUTH with the finishing point. We
will discuss this topic in greater detail when we cover the Entry screen. I just wanted to get you
thinking about it now. Layouts in Java are not an easy subject to discuss in a book. Some readers
will have ten years of coding under their belts and a few hundred source templates saved on disk;
others will have only written HelloWorld.java.

We create our text area at listing lines 55 through 62, then place it in a scroll pane at listing
line 63. Most of what I did was pretty self-explanatory. We do, however, need to talk about the

i)

setFont() call. I chose to use the font name ‘Courier.” Most systems which have some kind of
Web browser will have some kind of ‘Courier” font installed on them. When you are creating

columnar reports you need to have a fixed-width font so those columns have a chance at lining up.



Chapter 2 — Mega-Zillionarre Application 123

Most Java purists reading this will scream that I should have used the logical font name
‘Monospaced” which is required to be implemented by all Java VMs. The simple truth is that
‘Monospaced” is not required to be ‘implemen ted,” it is required to have a physical font mapped
to it. That font may have absolutely nothing to do with fixed width or monospace. Even Courier
is not a fixed-width font when dealing with TrueType fonts. At certain point sizes things will line
up, but it won' be perfect. Ultimately, the font you choose to use is up to you. I chose a font
which works well on most platforms. If it doesn' twork well for you, change the source and
recompile it.

The workhorse of this class is the generateReport() method. Here we read each record from
each stat file, save the values into our arrays, sort our arrays, then print our report into the text
area. You will note that I call updateText() from time to time. Whenever you call append() to add
text to a JtextArea, the text is added to the in memory object, but an event is only queued to
update any associated on-screen display. The display manager in Java waits until it ‘thinks” the
system is idle to update the display, or finds itself forced to update the display. The lines of code
in updateText() force the display manager to consolidate all of the updates and display them. This
step does slow down processing, so you should do it only at points in time when you feel the user
must see the progress which has been made.

I need to point out one tiny little thing at listing line 103. You may not grasp why I called
trim() after calling get(). The parselnt() static method throws exceptions if the numeric string you
hand it contains spaces. I don' know why it doesn' tall trim() on its own, but it doesn' .t As you
can see by listing line 111, parseDouble() managed to handle things just fine.

Listing lines 123 through 131 contain something I truly hate about Java 1.4 and earlier. The
NumberFormat object is very primitive. It does provide methods to set the minimum number of
fractional digits, and minimum number of integer digits, but it has no concept of justification, fill
character, or display width. If you try to set both the integer and fraction digits for a column, it
will zero fill on the front and force the display to look something like the following.

NO Hits Since Pct_Hits Ave_Btwn

30 0,035 00,010 000.092 009.886
16 0,036 00,010 000.094 009.583
52 0,041 00,009 000.108 008.293
23 0,027 00,014 000.071 013.111
25 0,040 00,010 000.105 008.525
48 0,042 00,010 000.110 008.071
43 0,038 00,011 000.100 009.026
45 0,031 00,014 000.081 011.290
03 0,030 00,015 000.079 011.700
46 0,044 00,011 000.116 007.659

04 0,031 00,016 000.081 011.290



124 Chapter 2 — Mega-Zillionarre Application

Not exactly what I would call human-friendly output. We discussed the Formatter class on
page 54. This class added something which was required to bring Java into the business world,
the ability to create a columnar report. Not one of you would pay your credit card bill if the text
swam all over the page, but that is just what the Java developers at Sun thought we should put up
with until Java 1.5 came out. Our output will look as follows, and we will live with it for now.

Mega Numbers

NO Hits Since Pct_Hits Ave_Btwn
02 13 11 0.000 10.222
27 7 15 0.000 11.333
22 13 16 0.000 9.946
32 7 18 0.000 11.333
31 7 19 0.000 10.686
08 6 22 0.000 12.931
19 5 23 0.000 11.750
05 6 21 0.000 9.146
37 8 27 0.000 14.346
15 10 25 0.000 11.242
14 7 24 0.000 9.590

Please note that we add a newLine character at listing line 155. We are not ‘printing” to the
text area, we are appending. It is our responsibility to insert the appropriate number of newLine
characters at the appropriate places.

Let' mow discuss the call to sort() at listing lines 119 and 188. I needed to pass in the second
and third parameter because I chose to use elements 1-56 instead of 0-55. The zero element was
never filled in and I didn' tvant to have stale garbage influencing the outcome of the sort. I have
already discussed the fact that I implemented Comparable with our object because the compiler
wouldn' et me implement a Comparator object when compiling for version 1.4 targets. In
theory, I guess the makers of Java 1.4 did you a favor. Some of your assignments will be much
more cut and paste than I like.

Listing line 215 is a trick you really need to know. The problem with text areas is that when
you get done writing to them, the display is at the bottom of them, not the top. You need to get
back to the top of the display so the user isn' t completely lost. This little statement handles that. It
resets the cursor position back to offset zero. This forces the eventual screen update showing the
top of the text area.

While it is probably more code than you wanted to look at, the Due report isn' tall that
complex. I' valready shown you how to create similar reports to the screen using xBasel] and
DBEF files. All you had to learn here was how to create a panel with a text area. Once you knew
that, you could simply walk down the databases, sort the data, and print the report.



Chapter 2 — Mega-Zillionaire Application 125

MegaXbaseBrowsePanel.java

1) package com.logikal.megazillxBasedJ;
2)
3) import java.io.*;
4) import java.awt.*;
5) import java.awt.event.*;
6) import javax.swing.*;
7) import java.util.*;
8) import java.text.*;
9)
10) import org.xBaseJ.*;
11) import org.xBaseJ.fields.*;
12) import org.xBaseJ.Util.*;
13) import org.xBaseJ.indexes.NDX;
14)
15) import com.logikal.megazillxBaseJ.MegaDBF;
16)
17)
18) public class MegaXbaseBrowsePanel extends JPanel
19) implements ActionListener {
20)
21) private JPanel mainPanel;
22) private JScrollPane sp;
23) private JButton refreshButton;
24) private JTable drawTable;
25) private DateFormat file_date_format = new SimpleDateFormat ( "yyyyMMdd");
26) private DateFormat out_date_format = new SimpleDateFormat ( "yyyy/MM/dd");
27)
28)
29) final static String columnNames [] = {"Draw_Dt ", "No_1", "No_2"
30) , IINO_3", IINO_4", IINO_5", "Mega_No"};
31)
32) [liiisiiiiii
33) // Constructor
34) Iliiiiiiiiii
35) public MegaXbaseBrowsePanel ( ) {
36) mainPanel = new JPanel( new GridBagLayout ());
37) GridBagConstraints gbc = new GridBagConstraints();
38)
39) // Add our refresh button first
40) // This way we have an object to find the root panel of
41) //
42) JPanel buttonPanel = new JPanel ();
43) refreshButton = new JButton ("Refresh");
44) refreshButton.addActionListener ( this);
45) buttonPanel.add( refreshButton, BorderLayout.NORTH) ;
46) gbc.anchor = GridBagConstraints.NORTH;
47) gbc.gridwidth = GridBagConstraints.REMAINDER;
48) mainPanel.add( buttonPanel, gbc);
49)
50) Object tData [][] = new Object [1]1[7]; // dummy table.
51)
52) drawTable = new JTable( tData, columnNames) ;
53) drawTable.setAutoResizeMode ( JTable.AUTO_RESIZE_ALL_COLUMNS) ;
54) sp = new JScrollPane (drawTable);
55) sp.setPreferredSize( new Dimension( 500, 300));
56)
57) mainPanel.add( sp);
58) add (mainPanel) ;
59) setVisible ( true);
60) }// end constructor
)



Chapter 2 — Mega-Zillionaire Application
private Object[][] fetchTableData( ) {
int 1l_record_count=0, 1_x, 1l_y, 1l_try_count;
String serverResponse=null;
MegaDBF aDB = new MegaDBF () ;
aDB.open_database () ;
DBF d = aDB.getDBF () ;
1_record_count = d.getRecordCount () ;
System.out.println( "Record count " + 1_record_count);
// declare an array to fill based upon rows in table
//
Object tableData [][] = new Object[ 1_record_count] [7];
// Fill our new array”
//
try {
1_x = 0;
d.startTop () ;
while ( 1_x < 1_record_count) {
try {
d.findNext () ;
tableDatal[ 1_x] [0] = out_date_format.format (
file_date_format.parse
( aDB.Draw_Dt.get ()));
tableDatal[ 1_x] [l] = new Integer( aDB.No_l.get () .trim());
tableDatal[ 1_x] [2] = new Integer( aDB.No_2.get ().trim());
tableDatal 1_x] [3] = new Integer( aDB.No_3.get().trim());
tableDatal[ 1_x] [4] = new Integer( aDB.No_4.get ().trim());
tableDatal 1_x] [5] = new Integer( aDB.No_b5.get ().trim());
tableData[ 1_x] [6] = new Integer( aDB.Mega_No.get ().trim());
} catch(ParseException p) {
1_x = 1_record_count + 1;
System.out.println( p.toString());
}
1_x++;
}// end while loop
System.out.println( "processed " + 1l_x + " rows");
}
catch( IOException s) {
1l_x = 1_record_count + 1;
JRootPane m = (JRootPane)
SwingUtilities.getAncestorOfClass( JRootPane.class,
refreshButton) ;
if (m != null)
{
JOptionPane.showMessageDialog(m, s.toString(), "Browse",
JOptionPane.ERROR_MESSAGE) ;
}
else
System.out.println( "m was null");
}
catch( xBaseJException 7j) {
1l_x = 1_record_count + 1;
JRootPane m = (JRootPane)



Chapter 2 — Mega-Zillionarre Application 127

123) SwingUtilities.getAncestorOfClass( JRootPane.class,
refreshButton) ;

124) if ((m != null)

125) {

126) JOptionPane.showMessageDialog(m, j.toString(), "Browse",

127) JOptionPane.ERROR_MESSAGE) ;

128) }

129) else

130) System.out.println( "m was null");

131) }

132)

133) aDB.close_database () ;

134)

135) return tableData;

136) } // end fetchTableData method

137)

138)

139)

140) public void actionPerformed(ActionEvent event) {

141) System.out.println( "Entered action event");

142) mainPanel.setVisible ( false);

143) mainPanel.remove ( sp);

144)

145) //

146) // Build a new table and scroll panel

147) //

148) Object tData [] [] = fetchTableData( );

149) drawTable = new JTable( tData, columnNames) ;

150) sp = new JScrollPane (drawTable);

151) sp.setPreferredSize( new Dimension( 600, 300));

152) mainPanel.add( sp);

153) mainPanel.setVisible (true);

154) }// end actionPerformed method

155)

156)

157) public void updateText () {

158) mainPanel.invalidate () ;

159) mainPanel.validate();

160) mainPanel.paintImmediately ( mainPanel.getVisibleRect ());

161) mainPanel.repaint () ;

162)

163) } // end MegaXbaseBrowsePanel class definition

Other than creating and manipulating a JTable object, the code for this panel doesn' tork
much differently from the Due report panel. I' mnot fond of listing lines 50 through 55, but I had
to have them. Remember my earlier rant about requiring values to instantiate? This is a great
example of how that gets you into trouble. I had to create a useless table so the screen would be
somewhat self-explanatory when a user first sees it.



128 Chapter 2 — Mega-Zillionarre Application

Figure 10 Empty Browse window

If I didn' put an empty table on the screen a user' {irst thought would be ‘Refresh what?”
when they saw the screen. This wouldn' be so bad if you could cleanly add data to it, but there
wasn' t a clean way to achieve that along with the refresh concept.

Why do I need the refresh concept? This panel attaches to the database, loads all of the rows,
closes the database, then displays the spreadsheet. It does all of that when the user clicks the
refresh button. It has to wait for the user to click that button because the very first time the
application is run there won' be a database. Even if there was a database, I would still need the
refresh button so the user can verify that records he or she adds via the Entry panel are actually in
the database along with all of the other data.

Listing line 63 might look a bit odd if you haven' done much with arrays in Java. This
private method returns a newly allocated two dimensional array of objects. While I could have
hard-coded the second dimension at the method level, I opted to leave it at the point of allocation.
We have seven fields, so we need seven columns, but until we obtain the record count from the
database, we have no idea how many rows are needed.



Chapter 2 — Mega-Zillionarre Application 129

Notice how I loaded the array. At listing line 70 I obtain a reference to the internal DBF
object. At listing line 84 I use that DBF object to force index positioning to the beginning. Inside
of the while loop at listing line 87 I use the DBF object again to call findNext().

Why did I go to all of this trouble? Because I didn' &dd a startTop() or findNext() wrapper
method to the MegaDBF.java source file, and you cannot pass a null string or a string of all spaces
to a DBF find method when a date or numeric key is involved. I wanted the data to appear in
sorted order. While it is possible to sort a table after it is loaded, that is not the kind of code I
want to write when compiling against a 1.4 target. Java 6 added RowSorter and TableRowSorter
to the language to make sorting data in a table much easier. You should spend some time reading
up on those capabilities.

Please look at listing lines 122 through 130. It' s not dot of code and most example programs
you find won' t showou how to do it. The result is that most example programs show a nice GUI
which writes all of its errors to a terminal window a user is supposedly monitory. This little code
snippet pops up a message dialog when an error happens. Depending on the class of error
indicated (error, warning, informational, etc.) a different dialog displays. Under normal
circumstances you will also get whatever has been configured as the associated system sound for
that type of message.

Listing lines 148 through 153 contain the code which actually performs the refresh function.
We call fetchTableData() to create a new dynamic array of Objects. Once we have that we create
a new JTable object then wrap it in a shiny new JScrollPane and display it. I tweaked the
preferred size so the date column would display completely without requiring a user to manually
resize it.

We actually never call the updateText() method. That is just a method I carry around from
panel class to panel class.

MegaXbaseEntryPanel.java
package com.logikal.megazillxBased;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import java.text.*;

) import org.xBased.*;

) import org.xBaseJ.fields.*;

) import org.xBaseJ.Util.*;

) import org.xBasedJ.indexes.NDX;
)

)

)

PRERRPRPRFROOJOU S WN

WN PR O— —— = = — = — —

import com.logikal.megazillxBaseJ.MegaDBF;
import com.logikal.megazillxBaseJ.StatElms;



130 Chaprer 2 — Mega-Zillionaire Application

17) import com.logikal.megazillxBaseJ.StatDBF;

19) // You need to import the Jjava.sqgl package to use JDBC
) //
) import java.sqgl.*;
) import java.io.*;
)
)
)
) public class MegaXbaseEntryPanel extends JPanel
27) implements ActionListener {
)
) public final int ELM_COUNT = 57; // highest number is 56 but I don't
) // feel like messing with zero
) public final int FIND_MODE = 1;
) public final int ENTRY_MODE = O0;
)
) private JFormattedTextField drawingDate;

35) private JFormattedTextField nol;
) private JFormattedTextField no2;
) private JFormattedTextField no3;
38) private JFormattedTextField no4;
)
)
)

private JFormattedTextField nob5;
private JFormattedTextField megaNo;
private JTextField deletedFlg;

) private JButton okButton;

) private JButton findButton;

) private JButton genStatsButton;

) private JButton deleteButton;

) private JButton clearButton;

) private JButton nextButton;

) private JButton prevButton;

) private JButton firstButton;

51) private JButton lastButton;

) private Connection conn;

)

) private int currMode;

)

)

) private StatElms drawNoStat([], megaNoStat[];

) private int 1_draw_no;

59) private Integer zerolnt;
) private String errorMsg;
)
62) private DateFormat out_format = new SimpleDateFormat ( "yyyyMMdd") ;
)
) private MegaDBF megaDBF=null;
)
66) //
// Fields to hold previous record values from Find
//
private int 1Nol, 1No2, 1No3, 1lNo4, 1No5, 1MegaNo;

private java.util.Date dDrawingDate;
private String draw_dt_str;

)
)
)
)
)
)
73) public MegaXbaseEntryPanel( ) {
)
) //

) // This internal class handles verification of numeric

) // input for JTextField

) //

)

InputVerifier verifier = new InputVerifier () {



Chapter 2 — Mega-Zillionarre Application

80) public boolean verify (JComponent comp) {

81) int currval=0;

82) boolean returnValue;

83) JFormattedTextField textField = (JFormattedTextField)comp;

84) try {

85) currVal = Integer.parselnt (textField.getText ());

86) returnValue = true;

87) } catch (NumberFormatException e) {

88) Toolkit.getDefaultToolkit () .beep();

89) returnValue = false;

90) }

91) if (returnvValue == true) {

92) if ( currval < 1 || currvVal >= ELM_COUNT)

93) returnValue = false;

94) }

95) return returnValue;

96) }

97)

98) public boolean shouldYieldFocus (JComponent input) {

99) verify (input);

100) return true;

101) }

102) bi

103)

104) zeroInt = new Integer( 0);

105)

106) JPanel controlPanel=new JPanel ();

107) controlPanel.setlLayout ( new GridBagLayout ());

108) GridBagConstraints gbc = new GridBagConstraints();

109)

110) gbc.anchor = GridBagConstraints.NORTH;

111) gbc.gridwidth = GridBagConstraints.REMAINDER;

112)

113) JLabel panelTitle=new JLabel ("Mega Zillionare Entry");

114) controlPanel.add( panelTitle, gbc);

115)

116) //

117) // Our Date prompt

118) //

119) gbc.anchor = GridBagConstraints.WEST;

120) gbc.gridwidth =1;

121) JLabel datelabel = new JLabel ( "Drawing Date:");

122) controlPanel.add( dateLabel);

123) drawingDate = new JFormattedTextField( new DecimalFormat
("HERFEEEE") ) ;

124) drawingDate.setColumns ( 10);

125) gbc.gridwidth = GridBagConstraints.REMAINDER;

126) controlPanel.add( drawingDate, gbc);

127)

128) //

129) // Prompts for the drawing numbers

130) //

131) gbc.anchor = GridBagConstraints.WEST;

132) gbc.gridwidth =1;

133) JLabel nolLabel = new JLabel( "No 1:");

134) controlPanel.add( nolLabel, gbc);

135) gbc.gridwidth = GridBagConstraints.REMAINDER;

136) nol = new JFormattedTextField(new DecimalFormat ("##"));

137) nol.setInputVerifier( verifier);

138) nol.setColumns (2) ;

139) controlPanel.add( nol, gbc);

140)

131



132

142)
143)
144)
145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)
160)
161)
162)
163)
164)
165)
166)
167)
168)
169)
170)
171)
172)
173)
174)
175)
176)
177)
178)
179)
180)
181)
182)
183)
184)
185)
186)
187)
188)
189)
190)
191)
192)
193)
194)
195)
196)
197)
198)
199)
200)
201)
202)
203)
204)

Chapter 2 — Mega-Zillionaire Application

gbc.anchor = GridBagConstraints.WEST;

gbc.gridwidth =1;

JLabel no2Label = new JLabel( "No 2:");
controlPanel.add( no2Label, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

no2 = new JFormattedTextField( new DecimalFormat ("##"));
no2.setInputVerifier( verifier);

no2.setColumns (2) ;

controlPanel.add( no2, gbc);

gbc.anchor = GridBagConstraints.WEST;

gbc.gridwidth =1;

JLabel no3Label = new JLabel( "No 3:");
controlPanel.add( no3Label, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

no3 = new JFormattedTextField( new DecimalFormat ("##"));
no3.setInputVerifier( verifier);

no3.setColumns (2) ;

controlPanel.add( no3, gbc);

gbc.anchor = GridBagConstraints.WEST;
gbc.gridwidth =1;

JLabel nod4lLabel = new JLabel( "No 4:");
controlPanel.add( no4Label, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

no4 = new JFormattedTextField(new DecimalFormat ("##"));
nod.setInputVerifier( verifier);

no4.setColumns (2) ;

controlPanel.add( no4, gbc);

gbc.anchor = GridBagConstraints.WEST;
gbc.gridwidth =1;

JLabel noS5Label = new JLabel( "No 5:");
controlPanel.add( nobSLabel, gbc);

gbc.gridwidth = GridBagConstraints.REMAINDER;

no5 = new JFormattedTextField(new DecimalFormat ("##"));
nob.setInputVerifier( verifier);

no5.setColumns (2) ;

controlPanel.add( no5, gbc);

gbc.anchor = GridBagConstraints.WEST;
gbc.gridwidth =1;

JLabel megaNoLabel = new JLabel( "Mega No:");
controlPanel.add( megaNoLabel, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;

megaNo = new JFormattedTextField(new DecimalFormat ("##"));

megaNo.setInputVerifier( verifier);
megaNo.setColumns (2) ;
controlPanel.add( megaNo, gbc);

gbc.anchor = GridBagConstraints.WEST;
gbc.gridwidth =1;

JLabel deletedFlgLabel = new JLabel( "Deleted:");
controlPanel.add( deletedFlgLabel, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
deletedFlg = new JTextField(1l);
deletedFlg.setEditable (false);

controlPanel.add( deletedFlg, gbc);



Chapter 2 — Mega-Zillionaire Application 133

205) //

206) // The Clear Button

207) //

208) gbc.anchor = GridBagConstraints.SOUTHWEST;
209) gbc.gridwidth = 1;

210) clearButton = new JButton("Clear");

211) clearButton.addActionListener ( this);

212) controlPanel.add( clearButton, gbc);

213)

214) //

215) // The Find Button

216) //

217) gbc.anchor = GridBagConstraints.SOUTHWEST;
218) gbc.gridwidth =1;

219) findButton = new JButton ("Find");

220) findButton.addActionListener ( this);

221) controlPanel.add( findButton, gbc);

222)

223) //

224) // The Delete Button

225) //

226) gbc.anchor = GridBagConstraints.SOUTHWEST;
227) gbc.gridwidth = 1;

228) deleteButton = new JButton ("Delete");

229) deleteButton.addActionListener ( this);

230) controlPanel.add( deleteButton, gbc);

231)

232) //

233) // The Gen Stats Button

234) //

235) gbc.anchor = GridBagConstraints.SOUTH;
236) gbc.gridwidth =1;

237) genStatsButton = new JButton ("Gen Stats");
238) genStatsButton.addActionListener ( this);
239) controlPanel.add( genStatsButton, gbc);
240)

241) //

242) // The OK Button

243) //

244) gbc.anchor = GridBagConstraints.SOUTHEAST;
245) gbc.gridwidth = GridBagConstraints.REMAINDER;
246) okButton = new JButton ("OK");

247) okButton.addActionListener ( this);

248) controlPanel.add( okButton, gbc);

249)

250)

251) //

252) // The First Button

253) //

254) gbc.anchor = GridBagConstraints.LINE_START;
255) gbc.gridwidth =1;

256) gbc.weightx =1.0;

257) firstButton = new JButton ("<<<");

258) firstButton.addActionListener ( this);

259) controlPanel.add( firstButton, gbc);

260)

261) //

262) // The Prev Button

263) //

264) gbc.anchor = GridBagConstraints.SOUTH;
265) gbc.gridwidth =1;

266) gbc.weightx = 0.0;

267) prevButton = new JButton(" < ");



134

268)
269)
270)
271)
272)
273)
274)
275)
276)
277)
278)
279)
280)
281)
282)
283)
284)
285)
286)
287)
288)
289)
290)
291)
292)
293)
294)
295)
296)
297)
298)
299)
300)
301)
302)
303)
304)
305)
306)
307)
308)
309)
310)
311)
312)
313)
314)
315)
316)
317)
318)
319)
320)
321)
322)
323)
324)
325)
326)
327)
328)
329)
330)

Chapter 2 — Mega-Zillionaire Application

prevButton.addActionListener ( this);
controlPanel.add( prevButton, gbc);

//

// The next Button

//

gbc.anchor = GridBagConstraints.SOUTH;
gbc.gridwidth = GridBagConstraints.RELATIVE;
nextButton = new JButton(" > ");

nextButton.addActionListener ( this);
controlPanel.add( nextButton, gbc);

//

// The Last Button

//

gbc.anchor = GridBagConstraints.SOUTHEAST;
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.weightx =1.0;

lastButton = new JButton(">>>");
lastButton.addActionListener ( this);
controlPanel.add( lastButton, gbc);

// Show the world

//

add ( controlPanel);
drawingDate.requestFocus () ;
setVisible ( true);

// Default mode is entry
//

currMode = ENTRY_MODE;
megaDBF = new MegaDBF () ;

} // end constructor

/i
// Method to handle button actions.
// Java has a real failing here. This code would be

// cleaner if a switch could be used on an object or
public void actionPerformed(ActionEvent e) {

if ( e.getSource() == okButton) {
if ( currMode == ENTRY_MODE) {
if (addRecord() == false)
display_error_msg( "Add Error");
} else {
if (updateRecord() == false)
display_error_msg( "Update Error");
}
return;
} // end test for okButton

if ( e.getSource() == deleteButton) {
if ( currMode != FIND_MODE) {

so much
string

display_error_msg( "Must find before deleting");

} else {
if ( deleteRecord() != true)
display_error_msg( "Delete Error");



Chapter 2 — Mega-Zillionaire Application 135

331) }

332) return;

333) } // end test for deleteButton

334)

335) if ( e.getSource() == findButton) {
336) currMode = FIND_MODE;

337) if ( findRecord() == false)

338) display_error_msg( "Drawing Not Found");
339) return;

340) } // end test for findButton

341)

342) if ( e.getSource() == genStatsButton) {
343) createStatsTable();

344) return;

345) } // end test for clear button

346)

347) if ( e.getSource() == clearButton) {
348) currMode = ENTRY_MODE;

349) draw_dt_str =" ";

350) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1lMegaNo = 0;
351) nol.setValue( null);

352) no2.setValue( null);

353) no3.setValue( null);

354) no4.setValue ( null);

355) no5.setValue ( null);

356) megaNo.setValue ( null);

357) deletedFlg.setText ("");

358) drawingDate.setValue ( null);

359) } // end test for clear button

360)

361) if ( e.getSource() == firstButton) {
362) currMode = FIND_MODE;

363) if ( firstRecord() == false)

364) display_error_msg( "Drawing Not Found");
365) return;

366) } // end test for firstButton

367)

368) if ( e.getSource() == prevButton) {
369) if ( prevRecord() == false)

370) display_error_msg( "Drawing Not Found");
371) return;

372) } // end test for prevButton

373)

374) if ( e.getSource() == nextButton) {
375) if ( nextRecord() == false)

376) display_error_msg( "Drawing Not Found");
377) return;

378) } // end test for nextButton

379)

380) if ( e.getSource() == lastButton) {
381) currMode = FIND_MODE;

382) if ( lastRecord() == false)

383) display_error_msg( "Drawing Not Found");
384) return;

385) } // end test for lastButton

386)

387) }// end actionPerformed method

388)

389)

390) /*iiiii

391) * method to add a record to the database
392) *iiiii

393) */



136 Chaprer 2 — Mega-Zillionaire Application

394) private boolean addRecord() {

395) boolean retVal = false;

396) int 1_x;

397) String ins_str;

398) String localDateStr=null;

399) // Obtain values from the panel

400) //

401) draw_dt_str = drawingDate.getText ();

402) pad_draw_dt_str();

403)

404) if (!is_record_valid())

405) return false;

406)

407)

408) try {

4009) localDateStr = out_format.format ( out_format.parse (draw_dt_str));
410) }

411) catch( ParseException p) {

412) display_error_msg( "Error parsing date" + p.toString());
413) }

414)

415) if ( localDateStr == null)

416) return false;

417)

418) // Attempt to add the record

419) //

420) try |

421) megaDBF .open_database () ;

422) megaDBF .No_1.put ( nol.getText ().trim());
423) megaDBF .No_2.put ( no2.getText () .trim());
424) megaDBF .No_3.put ( no3.getText () .trim());
425) megaDBF .No_4.put ( nod.getText () .trim());
426) megaDBF.No_5.put ( no5.getText () .trim());
427) megaDBF .Mega_No.put ( megaNo.getText () .trim());
428) megaDBF .Draw_Dt.put ( localDateStr);

429)

430) megaDBF .getDBF () .write();

431) megaDBF.close_database () ;

432)

433) retVal = true;

434) currMode = ENTRY_MODE;

435) draw_dt_str =" ";

436) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1lMegaNo = 0;
437) nol.setValue( null);

438) no2.setValue( null);

439) no3.setValue( null);

440) no4.setValue( null);

441) noS5.setValue( null);

442) megaNo.setValue ( null);

443) deletedFlg.setText (" ");

444) drawingDate.setValue ( null);

445) } catch( xBaseJException s) {

446) display_error_msg( "Error adding record " + s.toString());
447) } catch( IOException i) {

448) display_error_msg( "Error adding record " + i.toString());
449) }

450)

451)

452) return retVal;

453) } // end addRecord method

454)

455)

456) I*iiiii



Chapter 2 — Mega-Zillionaire Application 137

457) * method to update a record in the database

458) *iiiii

459) */

460) private boolean updateRecord() {

461) boolean retVal = false;

462) int 1_x;

463) String originalDrawDtStr;

464) String localDateStr=null;

465) String upd_str;

466)

467)

468) if (!is_record_valid())

469) return false;

470)

471) // Obtain values from the panel

472) //

473) originalDrawDtStr = draw_dt_str; // save original value
474) draw_dt_str = drawingDate.getText ();

475) pad_draw_dt_str();

476) try |

477) localDateStr = out_format.format ( out_format.parse (draw_dt_str));
478) } catch( ParseException p) {

479) display_error_msg( "Error parsing date " + p.toString());
480) }

481)

482) if (localDateStr == null)

483) return false;

484)

485) if (localDateStr.compareTo( originalDrawDtStr) != 0) {
486) display_error_msg( "Not allowed to change drawing date");
487) return false;

488) }

489)

490) // Attempt to add the record

491) //

492) try {

493) megaDBF .open_database () ;

494) megaDBF.find_EQ_record( localDateStr);

495) megaDBF .No_1.put ( nol.getText ().trim());

496) megaDBF .No_2.put ( no2.getText () .trim());

497) megaDBF .No_3.put ( no3.getText () .trim());

498) megaDBF .No_4.put ( nod.getText () .trim());

499) megaDBF.No_5.put ( no5.getText () .trim());

500) megaDBF .Mega_No.put ( megaNo.getText () .trim());
501) megaDBF .Draw_Dt.put ( localDateStr);

502)

503) megaDBF .getDBF () .update () ;

504) megaDBF.close_database () ;

505)

506) retVal = true;

507) currMode = ENTRY_MODE;

508) draw_dt_str =" ";

509) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1lMegaNo = 0;
510) nol.setValue( null);

511) no2.setValue( null);

512) no3.setValue( null);

513) no4.setValue( null);

514) no5.setValue( null);

515) megaNo.setValue ( null);

516) deletedFlg.setText (" ");

517) drawingDate.setValue ( null);

518) } catch( xBaseJException s) {

519) display_error_msg( "Error updating record " + s.toString());



138 Chaprer 2 — Mega-Zillionaire Application

520) } catch( IOException i) {

521) display_error_msg( "Error adding record " + i.toString());
522) }

523)

524)

525) return retval;

526) }// end updateRecord method

527)

528) I*iiiii

529) * method to delete a record which has been found
530) *iiiii

531) */

532) private boolean deleteRecord() {

533) boolean retVal = false;

534) int 1_x;

535) String del_str;

536) String localDateStr=null;

537)

538) draw_dt_str = drawingDate.getText ();

539) //pad_draw_dt_str();

540)

541) try {

542) localDateStr = out_format.format ( out_format.parse (draw_dt_str));
543) }

544) catch( ParseException p) {

545) display_error_msg( "Error parsing date " + p.toString());
546) }

547)

548) if (localDateStr == null)

549) return false;

550)

551) try {

552) megaDBF .open_database () ;

553) megaDBF.find EQ record( localDateStr);

554) megaDBF .getDBF () .delete () ;

555) megaDBF.close_database () ;

556)

557) retvVal = true;

558) currMode = ENTRY_MODE;

559) draw_dt_str =" ";

560) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1lMegaNo = 0;
561) nol.setValue( null);

562) no2.setValue ( null);

563) no3.setValue( null);

564) no4.setValue( null);

565) noS5.setValue( null);

566) megaNo.setValue ( null);

567) drawingDate.setValue ( null);

568) deletedFlg.setText (" ");

569) } catch( xBaseJException s) {

570) display_error_msg( "Error deleting record " + s.toString());
571) } catch( IOException i) {

572) display_error_msg( "Error adding record " + i.toString());
573) }

574)

575) return retVal;

576) } // end deleteRecord method

577)

578) I*iiiii

579) * method to find a record based upon drawing date
580) *iiiii

581) */

582) private boolean findRecord() {



Chapter 2 — Mega-Zillionaire Application 139

583) int 1_x=0;
584) boolean retVal=false;
585) String find_str;
586) String localDateStr=null;
587)
588) draw_dt_str = drawingDate.getText ();
589) pad_draw_dt_str();
590)
591) try {
592) localDateStr = out_format.format ( out_format.parse (draw_dt_str));
593) }
594) catch( ParseException p) {
595) display_error_msg( "Error parsing date " + p.toString());
596) localbDateStr = null;
597) }
598)
599) if (localDateStr == null)
600) return false;
601)
602) try {
603) megaDBF .open_database () ;
604) 1_x = megaDBF.find_GE_record( localDateStr);
605)
606) dDrawingDate = out_format.parse( megaDBF.Draw_Dt.get ());
607) 1Nol = Integer.parselnt ( megaDBF.No_l.get ().trim());
608) 1No2 = Integer.parselnt ( megaDBF.No_2.get () .trim());
609) 1No3 = Integer.parselnt ( megaDBF.No_3.get () .trim());
610) 1No4 = Integer.parselnt ( megaDBF.No_4.get () .trim());
611) 1No5 = Integer.parselnt ( megaDBF.No_5.get () .trim());
612) 1MegaNo = Integer.parselnt ( megaDBF.Mega_No.get ().trim
0)i
613)
614) if (megaDBF.getDBF () .deleted ()
615) deletedFlg.setText ("*");
616) else
617) deletedFlg.setText (" ");
618)
619) megaDBF.close_database () ;
620)
621) // Update the screen
622) //
623) drawingDate.setValue ( new Integer (out_format.format
(dDrawingDate)));
624) draw_dt_str = out_format.format ( dDrawingDate);
625) nol.setValue( new Integer (1Nol));
626) no2.setValue( new Integer (1No2));
627) no3.setValue( new Integer (1No3));
628) no4.setValue( new Integer (1No4));
629) no5.setValue ( new Integer (1Nob));
630) megaNo.setValue ( new Integer (1MegaNo));
631) retVal = true;
632) } catch( ParseException p) {
633) display_error_msg( "Error parsing date " + draw_dt_str +
634) "Error was " + p.toString());
635) draw_dt_str =" ";
636) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;
637) nol.setValue( null);
638) no2.setValue ( null);
639) no3.setValue( null);
640) no4.setValue( null);
641) nob5.setValue( null);
642) megaNo.setValue ( null);
"

'5;

643) deletedFlg.setText ("



140 Chapter 2 — Mega-Zillionarre Application

644) drawingDate.setValue ( null);

645) } catch( NumberFormatException n) {

646) display_error_msg( "Error parsing date " + draw_dt_str +
647) "Error was " + n.toString());

648) draw_dt_str = " ";

649) 1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;
650) nol.setValue( null);

651) no2.setValue( null);

652) no3.setValue( null);

653) no4.setValue( null);

654) nob5.setValue( null);

655) megaNo.setValue ( null);

656) deletedFlg.setText (" ");

657) drawingDate.setValue ( null);

658) }

659) return retVal;

660) } // end findRecord method

661)

662)

663) Iliiiii

664) // Internal method to pad the display of numbers to 2 digits
665) [liiiii

666) private void pad_draw_dt_str () {

667) draw_dt_str = draw_dt_str.trim();

668) switch( draw_dt_str.length()) {

669) case 4: // only year provided

670) draw_dt_str += "0101";

671) break;

672) case 6: // year and month

673) draw_dt_str += "01";

674) break;

675) case 8: // full date, no padding
676) break;

677) default: // no idea, pick a default
678) draw_dt_str = "19900101";

679) break;

680) } // end switch of length

681)

682) } // end pad_draw_dt_str method

683)

684)

685) I*iiiii

686) * Begin logic to rebuild the Stats tables
687) i

688) */

689) public void createStatsTable ()

690) {

691) int 1_x;

692) int 1_record_count;

693)

694) 1_draw_no = 0;

695) //

696) // It will seem odd to you, but you have to do 2
697) // allocations when working with a non native array.
698) //

699) //

700) drawNoStat = new StatElms[ ELM_COUNT];
701) for (l_x=1; 1l_x < ELM_COUNT; 1_x++ ) {
702) drawNoStat [ 1_x] = new StatElms();
703) drawNoStat [ 1_x].elmNo = 1_x;
704) } // end for loop to init stats

705)

706)



Chapter 2 — Mega-Zillionaire Application 141

707) megaNoStat = new StatElms|[ ELM_COUNT];

708) System.out.println( "Initializing megaNoStat");

709) for (1_x=1; 1_x < ELM_COUNT; 1_x++ ) {

710) megaNoStat [ 1_x] = new StatElms();

711) megaNoStat [ 1_x].elmNo = 1_x;

712) }// end for loop to init stats

713)

714)

715) megaDBF .open_database () ;

716)

717) // Create a statement

718) try {

719) 1_record_count = megaDBF.getDBF () .getRecordCount () ;

720)

721) for (l_x=1; 1l_x <= 1_record_count; 1_x++) {

722) megaDBF .getDBF () .gotoRecord( 1_x);

723) 1_draw_no++;

724) updateDrawStats ( Integer.parselnt ( megaDBF.No_1l.get () .trim
()));

725) updateDrawStats ( Integer.parselnt ( megaDBF.No_2.get ().trim
)));

726) updateDrawStats ( Integer.parselnt ( megaDBF.No_3.get () .trim
)i

727) updateDrawStats ( Integer.parselnt ( megaDBF.No_4.get () .trim
)

728) updateDrawStats ( Integer.parselnt ( megaDBF.No_5.get () .trim
()));

729) updateMegaStats ( Integer.parselnt ( megaDBF.Mega_No.get
() .trim()));

730)

731) if (l1_draw_no % 100 == 0)

732) System.out.println( "Processed " + 1l_x + " Records");

733) } // end for 1_y loop

734)

735) megaDBF.close_database () ;

736) } catch( xBaseJException s) {

737) display_error_msg( "Error reading DBF " + s.toString());

738) }  catch( IOException i) {

739) display_error_msg( "Error reading DBEF " + i.toString());

740) } catch( NumberFormatException n) {

741) display_error_msg( "Error parsing integer " + n.toString());

742) }

743)

744) System.out.println( "Processed " + 1 _draw_no + " Records");

745)

746) writeDrawStats( );

747)

748) } // end createStatsTable method

749)

750) Iliiiiiiiiii

751) // Method to actually write all of our Stats records to the database.

752) Iliiiiiisiii

753) private void writeDrawStats( ) {

754)

755) int 1_x, 1_missed, 1l_y;

756) StatDBF drawStatDBF=null;

757) StatDBF megaStatDBF=null;

758)

759) drawStatDBF = new StatDBF () ;

760) megaStatDBF = new StatDBF () ;

761)

762) drawStatDBF.create_database( "drawst");

763) megaStatDBF.create_database( "megast");



142 Chapter 2 — Mega-Zillionarre Application

764)

765)

766) System.out.println( "Writing mega stats records");

767) System.out.println( "Value of 1_draw_no " + 1_draw_no);

768)

769) for (1l_x=1; 1_x < ELM_COUNT; 1_x++ ) {

770) drawNoStat [ 1_x].pctHits = (double) ( megaNoStat[ 1_x].hitCount) /

771) (double) ( 1_draw_no);

772) 1_missed = 1_draw_no - megaNoStat[ 1_x].hitCount;

773) megaNoStat[ 1_x].aveBtwn = (double) ( 1l_missed) /

774) (double) ( drawNoStat[ 1_x].hitCount);

775) megaNoStat [ 1_x].sincelast = 1l_draw_no - megaNoStat
[1_x].lastDrawNo;

776)

777) try |

778) megaStatDBF.Elm_No.put ( megaNoStat[ 1_x].elmNo);

779) megaStatDBF.Hit_Count.put ( megaNoStat[ 1_x].hitCount);

780) megaStatDBF.Last_Draw_No.put ( megaNoStat[ 1_x].lastDrawNo);

781) megaStatDBF.Since_Last.put ( megaNoStat[ 1_x].sincelast);

782) megaStatDBF.Curr_Seqg.put ( megaNoStat[ 1_x].currSeq);

783) megaStatDBF.Longest_Seq.put ( megaNoStat[ 1_x].longestSeq);

784) megaStatDBF.Pct_Hits.put ( megaNoStat[ 1_x].pctHits);

785) megaStatDBF .Max_Btwn.put ( megaNoStat[ 1_x].maxBtwn);

786) megaStatDBF.Ave_Btwn.put ( megaNoStat[ 1_x].aveBtwn);

787)

788) megaStatDBF.getDBF () .write();

789)

790) } catch( xBaseJException s) {

791) display_error_msg( "Error adding Mega stat record " +

792) s.toString());

793) }  catch( IOException i) {

794) display_error_msg( "Error reading DBF " + i.toString());

795) }

796) } // end for 1_x loop

797)

798) System.out.println( "Writing Drawing stats records");

799)

800) for (1_x=1; 1_x < ELM_COUNT; 1_x++ ) {

801) drawNoStat[ 1_x].pctHits = (double) ( drawNoStat[ 1_x].hitCount) /

802) (double) ( 1_draw_no);

803) 1_missed = 1_draw_no - drawNoStat[ 1_x].hitCount;

804) drawNoStat [ 1_x].aveBtwn = (double) ( 1l_missed) /

805) (double) ( drawNoStat|[ 1_x].hitCount);

806) drawNoStat[ 1_x].sincelLast = 1_draw_no - drawNoStat
[1_x].lastDrawNo;

807)

808) try {

809) drawStatDBF.Elm_No.put ( drawNoStat[ 1_x].elmNo);

810) drawStatDBF.Hit_Count.put ( drawNoStat[ 1_x].hitCount);

811) drawStatDBF.Last_Draw_No.put ( drawNoStat[ 1l_x].lastDrawNo) ;

812) drawStatDBF.Since_Last.put ( drawNoStat[ 1_x].sincelast);

813) drawStatDBF.Curr_Seq.put ( drawNoStat[ 1_x].currSeq);

814) drawStatDBF.Longest_Seqg.put ( drawNoStat[ 1_x].longestSeq);

815) drawStatDBF.Pct_Hits.put ( drawNoStat[ 1_x].pctHits);

816) drawStatDBF .Max_Btwn.put ( drawNoStat [ 1_x].maxBtwn);

817) drawStatDBF.Ave_Btwn.put ( drawNoStat[ 1_x].aveBtwn);

818)

819) drawStatDBF.getDBF () .write () ;

820) } catch( xBaseJException s) {

821) display_error_msg( "Error adding Drawing Stat record " +

822) s.toString());

823) }  catch( IOException i) {

824) display_error_msg( "Error reading DBF " + i.toString());



Chapter 2 — Mega-Zillionaire Application 143

825) }

826) } // end for 1_x loop

827)

828) System.out.println( "All Stats records successfully written");

829) JRootPane j = (JRootPane) SwingUtilities.getAncestorOfClass
( JRootPane.class, nol);

830) if ( j !'= null) {

831) JOptionPane.showMessageDialog (j, "All Stats records successfully
written",

832) "Stats Generated",
JOptionPane.PLAIN_MESSAGE) ;

833) }

834) else

835) System.out.println( "3j was null");

836)

837) } // end writeDrawStats method

838)

839)

840) private void updateDrawStats( int num_sub) {

841) int 1_x;

842)

843) 1l_x = 1_draw_no - drawNoStat[ num_sub].lastDrawNo;

844)

845) if (1_x == 1)

846) {

847) drawNoStat [ num_sub].currSeqg++;

848) if (drawNoStat[ num_sub].currSeqg > drawNoStat
[ num_sub].longestSeq)

849) {

850) drawNoStat [ num_sub].longestSeq = drawNoStat
[ num_sub] .currSeq;

851) }

852) }

853) else {

854) drawNoStat [ num_sub].currSeq = 0;

855) if (1_x > drawNoStat [num_sub] .maxBtwn)

856) {

857) drawNoStat [ num_sub] .maxBtwn = 1_x;

858) }

859) } // end test for sequence

860)

861) drawNoStat [ num_sub].hitCount++;

862) drawNoStat [ num_sub].lastDrawNo = 1_draw_no;

863) drawNoStat [ num_sub].sincelast = 1_x;

864) } // end updaterawStats method

865)

866) private void updateMegaStats( int num_sub) {

867) int 1_x%;

868)

869) l_x = 1_draw_no - megaNoStat[ num_sub].lastDrawNo;

870)

871) if (1_x == 1)

872) {

873) megaNoStat [ num_sub].currSeg+t+;

874) if (megaNoStat[ num_sub].currSeq > megaNoStat
[ num_sub].longestSeq)

875) {

876) megaNoStat [ num_sub].longestSeqg = megaNoStat
[ num_sub] .currSeq;

877) }

878) }

879) else {

880) megaNoStat [ num_sub].currSeq = 0;



144

881)
882)
883)
884)
885)
886)
887)
888)
889)
890)
891)
892)
893)
894)
895)
896)
897)
898)
899)
900)
901)
902)
903)
904)
905)
906)
907)
908)
909)
910)
911)
912)
913)
914)
915)
916)
917)
918)
919)
920)
921)
922)
923)
924)
925)
926)
927)
928)
929)
930)
931)
932)
933)
934)
935)
936)
937)
938)
939)
940)
941)
942)
943)

Chapter 2 — Mega-Zillionaire Application

if (1_x > megaNoStat [num_sub].maxBtwn)
{

megaNoStat [ num_sub].maxBtwn = 1_x;
}

} // end test for sequence

megaNoStat [ num_sub].hitCount++;
megaNoStat [ num_sub].lastDrawNo = 1_draw_no;
megaNoStat [ num_sub].sincelast = 1_x;

} // end updateMegaStats method

private boolean is_record_valid() {
if (nol.getValue() == null) {
errorMsg = "No 1 Invalid";
nol.requestFocus () ;
return false;

if (no2.getValue() == null) {
errorMsg = "No 2 Invalid";
no2.requestFocus () ;
return false;

if (no3.getValue() == null) {
errorMsg = "No 3 Invalid";
no3.requestFocus () ;
return false;

if (nod.getValue() == null) {
errorMsg = "No 4 Invalid";
noé4.requestFocus () ;
return false;

if (no5.getValue() == null) {
errorMsg = "No 5 Invalid";
nob5.requestFocus () ;
return false;

if ( megaNo.getValue() == null) {
errorMsg = "Mega No Invalid";
megaNo.requestFocus () ;
return false;

}

return true;
} // end is_record_valid method

void display_error_msg( String msg) {
JRootPane m = (JRootPane)
SwingUtilities.getAncestorOfClass ( JRootPane.class, drawingDate);
if ((m != null)
{
JOptionPane.showMessageDialog(m, msg, "Entry",
JOptionPane.ERROR_MESSAGE) ;
}
else
System.out.println( "m was null msg was |" + msg + "|");
} // end display_error_msg



Chapter 2 — Mega-Zillionaire Application 145

944)

945)

946) [*iiiii

947) * method to find first record

948) *iiiii

949) */

950) private boolean firstRecord() {

951) int 1_x=0;

952) boolean retVal=false;

953) String find_str;

954) String localDateStr=null;

955)

956) try |

957) megaDBF .open_database () ;

958) megaDBF .getDBF () .startTop () ;

959) megaDBF .getDBF () . findNext () ;

960)

961) dDrawingDate = out_format.parse( megaDBF.Draw_Dt.get ());

962) 1Nol = Integer.parselnt ( megaDBF.No_l.get () .trim());

963) 1No2 = Integer.parselnt ( megaDBF.No_2.get () .trim());

964) 1No3 = Integer.parselnt ( megaDBF.No_3.get () .trim());

965) 1No4 = Integer.parselnt ( megaDBF.No_4.get ().trim());

966) 1No5 = Integer.parselnt ( megaDBF.No_5.get ().trim());

967) 1MegaNo = Integer.parselnt ( megaDBF.Mega_No.get ().trim
0)s

968)

969) if (megaDBF.getDBF () .deleted())

970) deletedFlg.setText ("*");

971) else

972) deletedFlg.setText (" ");

973)

974) megaDBF.close_database () ;

975)

976) // Update the screen

977) //

978) drawingDate.setValue ( new Integer (out_format.format
(dDrawingDate)));

979) draw_dt_str = out_format.format ( dDrawingDate);

980) nol.setValue( new Integer (1Nol));

981) no2.setValue ( new Integer (1No2));

982) no3.setValue( new Integer (1No3));

983) nod.setValue ( new Integer (1No4));

984) nob5.setValue ( new Integer (1Nob));

985) megaNo.setValue ( new Integer (1MegaNo)) ;

986) retVal = true;

987) } catch( xBaseJException s) {

988) display_error_msg( "Unable to find " + localDateStr +

989) "Error was " + s.toString());

990) draw_dt_str = " ";

991) INol = 1No2 = 1No3 = 1No4 = 1Nob = IMegaNo = 0;

992) nol.setValue( null);

993) no2.setValue( null);

994) no3.setValue ( null);

995) no4.setValue( null);

996) no5.setValue( null);

997) megaNo.setValue ( null);

998) deletedFlg.setText (" ");

999) drawingDate.setValue ( null);

1000) } catch( IOException i) {

1001) display_error_msg( "Unable to find " + localDateStr +

1002) "Error was " + i.toString());

1003) draw_dt_str = " ";

4
1004) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;



146 Chapter 2 — Mega-Zillionarre Application

1005) nol.setValue( null);

1006) no2.setValue ( null);

1007) no3.setValue( null);

1008) no4.setValue( null);

1009) noS5.setValue( null);

1010) megaNo.setValue ( null);

1011) deletedFlg.setText (" ");

1012) drawingDate.setValue ( null);

1013) } catch( ParseException p) {

1014) display_error_msg( "Error parsing date " + draw_dt_str +

1015) "Error was " + p.toString());

1016) draw_dt_str =" ";

1017) 1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;

1018) nol.setValue( null);

1019) no2.setValue ( null);

1020) no3.setValue( null);

1021) no4.setValue( null);

1022) nob5.setValue( null);

1023) megaNo.setValue ( null);

1024) deletedFlg.setText (" ");

1025) drawingDate.setValue ( null);

1026) } catch( NumberFormatException n) {

1027) display_error_msg( "Error parsing date " + draw_dt_str +

1028) "Error was " + n.toString());

1029) draw_dt_str =" ";

1030) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1lMegaNo = 0;

1031) nol.setValue( null);

1032) no2.setValue( null);

1033) no3.setValue( null);

1034) no4.setValue( null);

1035) no5.setValue ( null);

1036) megaNo.setValue ( null);

1037) deletedFlg.setText (" ");

1038) drawingDate.setValue ( null);

1039) }

1040)

1041) return retval;

1042) } // end firstRecord method

1043)

1044) /x5

1045) * method to find previous record based upon drawing date

1046) *iiiii

1047) */

1048) private boolean prevRecord() {

1049) int 1_x=0;

1050) boolean retVal=false;

1051) String find_str;

1052) String localDateStr=null;

1053)

1054) if (currMode != FIND_MODE) {

1055) display_error_msg( "Must have previously found to move back one
record");

10506) return false;

1057) }

1058)

1059) draw_dt_str = drawingDate.getText ();

1060) pad_draw_dt_str();

1061)

1062) try {

1063) localDateStr = out_format.format ( out_format.parse
(draw_dt_str));

1064) }

1065) catch( ParseException p) {



Chapter 2 — Mega-Zillionaire Application 147

1066) display_error_msg( "Error parsing date " + p.toString());
1067) localDateStr = null;
1068) }
1069)
1070) if (localDateStr == null)
1071) return false;
1072)
1073) try {
1074) megaDBF .open_database () ;
1075) megaDBF.find_EQ record( draw_dt_str);
1076) megaDBF .getDBF () . findPrev () ;
1077)
1078) dDrawingDate = out_format.parse( megaDBF.Draw_Dt.get ());
1079) 1Nol = Integer.parselnt ( megaDBF.No_l.get ().trim());
1080) 1No2 = Integer.parselnt ( megaDBF.No_2.get ().trim());
1081) 1No3 = Integer.parselnt ( megaDBF.No_3.get ().trim());
1082) 1No4 = Integer.parselnt ( megaDBF.No_4.get ().trim());
1083) 1Nob5 = Integer.parselnt ( megaDBF.No_5.get () .trim());
1084) 1MegaNo = Integer.parselnt ( megaDBF.Mega_No.get () .trim
0)i
1085)
1086) if (megaDBF.getDBF () .deleted())
1087) deletedFlg.setText ( "*");
1088) else
1089) deletedFlg.setText (" ");
1090)
1091) megaDBF .close_database () ;
1092)
1093) // Update the screen
1094) //
1095) drawingDate.setValue ( new Integer (out_format.format
(dDrawingDate)));
1096) draw_dt_str = out_format.format ( dDrawingDate);
1097) nol.setValue ( new Integer (1Nol));
1098) no2.setValue( new Integer (1No2));
1099) no3.setValue ( new Integer (1No3));
1100) no4.setValue ( new Integer (1No4));
1101) no5.setValue ( new Integer (1Nob));
1102) megaNo.setValue ( new Integer (1MegaNo));
1103) retVal = true;
1104) } catch( xBaseJException s) {
1105) display_error_msg( "Unable to find " + localDateStr +
1106) "Error was " + s.toString());
1107) draw_dt_str =" ";
1108) 1INol = 1No2 = 1No3 = 1No4 = 1Nob5 = 1MegaNo = 0;
1109) nol.setValue( null);
1110) no2.setValue( null);
1111) no3.setValue( null);
1112) no4.setValue( null);
1113) nob5.setValue( null);
1114) megaNo.setValue ( null);
1115) drawingDate.setValue ( null);
1116) deletedFlg.setText (" ");
1117) } catch( IOException i) {
1118) display_error_msg( "Unable to find " + localDateStr +
1119) "Error was " + i.toString());
1120) draw_dt_str = " ";
1121) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1lMegaNo = 0;
1122) nol.setValue( null);
1123) no2.setValue ( null);
1124) no3.setValue( null);
1125) no4.setValue( null);
) 4

11206) nob5.setValue( null



148

1127)
1128)
1129)
1130)
1131)
1132)
1133)
1134)
1135)
1136)
1137)
1138)
1139)
1140)
1141)
1142)
1143)
1144)
1145)
1146)
1147)
1148)
1149)
1150)
1151)
1152)
1153)
1154)
1155)
1156)
1157)
1158)
1159)
1160)
1161)
1162)
1163)
1164)
1165)
1166)
1167)
1168)
1169)
1170)
1171)
1172)
1173)
1174)
1175)

1176)
1177)
1178)
1179)
1180)
1181)
1182)
1183)
1184)
1185)
1186)
1187)
1188)

Chapter 2 — Mega-Zillionaire Application

megaNo.setValue ( null);

drawingDate.setValue ( null);

deletedFlg.setText (" ");

} catch( ParseException p) {
display_error_msg( "Error parsing date " + draw_dt_str +
"Error was " + p.toString());

draw_dt_str = " ";

1Nol = 1No2 = 1No3

nol.setValue( null);

no2.setValue ( null);
)
) 4

1No4 = 1No5 = 1MegaNo = 0;

no3.setValue( null
no4.setValue( null
noS5.setValue( null);
megaNo.setValue ( null);
drawingDate.setValue ( null);
deletedFlg.setText (" ");

} catch( NumberFormatException n) {
display_error_msg( "Error parsing date " + draw_dt_str +

"Error was " + n.toString());

draw_dt_str =" ";
1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;
nol.setValue( null)
no2.setValue( null)
no3.setValue( null)
no4.setValue( null)
no5.setValue( null);
megaNo.setValue ( null);
drawingDate.setValue ( null);
deletedFlg.setText (" ");

}

return retVal;
// end prevRecord method

......

private boolean nextRecord() {

int 1_x=0;

boolean retVal=false;
String find_str;

String localDateStr=null;

draw_dt_str = drawingDate.getText ();
pad_draw_dt_str();

try |
localDateStr = out_format.format ( out_format.parse

(draw_dt_str));

}

catch( ParseException p) {
display_error_msg( "Error parsing date " + p.toString());
localDateStr = null;

}

if (localDateStr == null)
return false;

try {
megaDBF .open_database () ;
megaDBF.find_GE_record( localDateStr.trim());
megaDBF .getDBF () . findNext () ;



Chapter 2 — Mega-Zillionaire Application 149

1189)

1190) dDrawingDate = out_format.parse( megaDBF.Draw_Dt.get ());

1191) 1Nol = Integer.parselnt ( megaDBF.No_l.get ().trim()

1192) 1No2 = Integer.parselnt ( megaDBF.No_2.get () .trim()

1193) 1No3 = Integer.parselnt ( megaDBF.No_3.get () .trim()

1194) 1No4 = Integer.parselnt ( megaDBF.No_4.get () .trim()

1195) 1No5 = Integer.parselnt ( megaDBF.No_5.get ().trim()

1196) 1MegaNo = Integer.parselnt ( megaDBF.Mega_No.get ().trim
0)i

1197) if (megaDBF.getDBF () .deleted())

1198) deletedFlg.setText ("*");

1199) else

1200) deletedFlg.setText (" ");

1201)

1202) megaDBF.close_database () ;

1203)

1204) // Update the screen

1205) //

1206) drawingDate.setValue ( new Integer (out_format.format
(dDrawingDate)));

1207) draw_dt_str = out_format.format ( dDrawingDate);

1208) nol.setValue( new Integer (1Nol));

1209) no2.setValue ( new Integer (1No2));

1210) no3.setValue( new Integer (1No3));

1211) no4.setValue ( new Integer (1No4));

1212) nob5.setValue ( new Integer (1Nob));

1213) megaNo.setValue ( new Integer (1MegaNo));

1214) retVal = true;

1215) } catch( xBaseJException s) {

1216) display_error_msg( "Unable to find " + localDateStr +

1217) "Error was " + s.toString());

1218) draw_dt_str =" ";

1219) 1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;

1220) nol.setValue( null);

1221) no2.setValue( null);

1222) no3.setValue( null);

1223) no4.setValue( null);

1224) no5.setValue ( null);

1225) megaNo.setValue ( null);

1226) drawingDate.setValue ( null);

1227) } catch( IOException i) {

1228) display_error_msg( "Unable to find " + localDateStr +

1229) "Error was " + i.toString());

1230) draw_dt_str =" ";

1231) 1INol = 1No2 = 1No3 = 1No4 = 1Nob5 = 1MegaNo = 0;

1232) nol.setValue( null);

1233) no2.setValue( null);

1234) no3.setValue( null);

1235) no4.setValue( null);

1236) nob5.setValue( null);

1237) megaNo.setValue ( null);

1238) drawingDate.setValue ( null);

1239) } catch( ParseException p) {

1240) display_error_msg( "Error parsing date " + draw_dt_str +

1241) "Error was " + p.toString());

1242) draw_dt_str =" ";

1243) 1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;

1244) nol.setValue( null);

1245) no2.setValue( null);

1246) no3.setValue( null);

1247) no4.setValue( null);

1248) no5.setValue ( null);

1249) megaNo.setValue ( null);



150 Chaprer 2 — Mega-Zillionaire Application

1250) drawingDate.setValue ( null);

1251) }

1252)

1253) return retval;

1254) } // end nextRecord method

1255)

1256) /*iiii

1257) * method to find last record based upon drawing date

1258) *iiiii

1259) */

1260) private boolean lastRecord() {

1261) int 1_x=0;

1262) boolean retVal=false;

1263) String find_str;

1264) String localDateStr=null;

1265)

1266) try |

1267) megaDBF .open_database () ;

1268) megaDBF .getDBF () .startBottom() ;

1269) megaDBF .getDBF () . findPrev () ;

1270)

1271) dDrawingDate = out_format.parse( megaDBF.Draw_Dt.get ());

1272) 1Nol = Integer.parselnt ( megaDBF.No_l.get ().trim());

1273) 1No2 = Integer.parselnt ( megaDBF.No_2.get ().trim());

1274) 1No3 = Integer.parselnt ( megaDBF.No_3.get () .trim());

1275) 1No4 = Integer.parselnt ( megaDBF.No_4.get ().trim());

1276) 1No5 = Integer.parselnt ( megaDBF.No_5.get () .trim());

1277) 1MegaNo = Integer.parselnt ( megaDBF.Mega_No.get ().trim
0);

1278)

1279) if (megaDBF.getDBF () .deleted())

1280) deletedFlg.setText ("*");

1281) else

1282) deletedFlg.setText (" ");

1283)

1284) megaDBF.close_database () ;

1285)

1286) // Update the screen

1287) //

1288) drawingDate.setValue ( new Integer (out_format.format
(dDrawingDate)));

1289) draw_dt_str = out_format.format ( dDrawingDate);

1290) nol.setValue( new Integer (1Nol));

1291) no2.setValue ( new Integer (1No2));

1292) no3.setValue( new Integer (1No3));

1293) no4.setValue( new Integer (1No4));

1294) nob.setValue ( new Integer (1Nob5));

1295) megaNo.setValue ( new Integer (1MegaNo)) ;

1296) retVal = true;

1297) } catch( xBaseJException s) {

1298) display_error_msg( "Unable to find " + localDateStr +

1299) "Error was " + s.toString());

1300) draw_dt_str =" ";

1301) 1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;

1302) nol.setValue( null);

1303) no2.setValue( null);

1304) no3.setValue( null);

1305) no4.setValue ( null);

1306) nob5.setValue( null);

1307) megaNo.setValue ( null);

1308) drawingDate.setValue ( null);

1309) } catch( IOException i) {

1310) display_error_msg( "Unable to find " + localDateStr +



Chapter 2 — Mega-Zillionaire Application 151

1311) "Error was " + i.toString());

1312) draw_dt_str =" ";

1313) 1Nol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;
1314) nol.setValue( null);

1315) no2.setValue( null);

1316) no3.setValue( null);

1317) no4.setValue( null);

1318) nob5.setValue( null);

1319) megaNo.setValue ( null);

1320) drawingDate.setValue ( null);

1321) } catch( ParseException p) {

1322) display_error_msg( "Error parsing date " + draw_dt_str +
1323) "Error was " + p.toString());

1324) draw_dt_str = " ";

1325) 1INol = 1No2 = 1No3 = 1No4 = 1No5 = 1MegaNo = 0;
1326) nol.setValue( null);

1327) no2.setValue ( null);

1328) no3.setValue( null);

1329) no4.setValue( null);

1330) no5.setValue ( null);

1331) megaNo.setValue ( null);

1332) drawingDate.setValue( null);

1333) }

1334)

1335) return retval;

1336) } // end findRecord method

1337)

1338)

1339) } // end MegaXbaseEntryPanel class definition

I' nsorry. The listing for MegaXbaseEntryPanel is just long. It would have been even longer
if I had continued adding some other neat features.

We need to start our discussion at listing lines 79 through 102. I have no way of knowing
what level your Java skills are, so let me point out the internal class contraption we use to verify
drawing number input is within a valid range. Everything between the first { and the ending }
becomes the body of the abstract class. We must provide a Boolean verify() method and a
Boolean shouldYieldFocus() method. The actual editing/validating happens in the verify()
method. Here we convert the JComponent object to a type we know it to be. (Yes, I could have
made this even more robust by checking with instanceof.) We pass back either true or false to
indicate the quality of the data.

You will find documentation online which claims the shouldYieldFocus() method is optional.
I wouldn' buy that statement even if they paid me to take it, mainly because years ago I tried to
leave it out. We aren' far enough into the source code yet, but it shouldn' take much for you to
believe that I like to toss up error message dialogs when something failed validation. After the
first error tries to throw a dialog up you find yourself in a deadly embrace with multiple things
absolutely demanding they be allowed to have focus at the same time. It' siot a pretty picture.
Depending on how you launched your application you could even be forced to reboot. You don' t
directly call shouldYieldFocus(), the underlying Swing API does.



152 Chapter 2 — Mega-Zillionarre Application

Please look at listing lines 254 through 259. This is where we create the ‘top of data” or
“first record” button (<<<<). The LINE_START value is basically a synonym for WEST. The
really important line is where we set gbc.weightx to 1.0. This creates the gap between the (<<<<)
button and the (<) button. I did not spend much time closing the gap between the (<) and (>)
buttons. This gap exists for two reasons:

1. buttons are sized based upon the text they contain
2. buttons are positioned based upon the order in which they are declared and
gridwidth

You can change the gridwidth for the (>) button to 1 from RELATIVE and you can add both
a leading and trailing space in the text of both buttons. This will cause the buttons to mush
together under Find and Delete, but they won' teally be visually centered. GridBagConstraints
does have a public integer array named columnWidths and it provides a method
getLayoutDimensions() column widths and row heights for the current layout. If you put more
columnWidth values into the array than currently exist, columns will be added to the layout. I
leave the centering of those buttons as an exercise for the reader.

Listing line 294 is something I haven' talked much about; I' vgust been using it. When you
get done creating a panel or dialog you can tell Swing what component you want to have focus by
calling this method. Be sure to remember that calling it in the constructor means the focus is only
set the first time the object is displayed.

Our actionPerformed() method at listing line 311 would really benefit if Java could add
switch constructs which used non-constant values in the case statements. The logic would at least
look a lot cleaner.

Normally I wouldn' put a bunch of assignment statements in an event switch as I did at
listing lines 348 through 358, but I got cut-and-paste happy, and I wanted to give you an easy
assignment. Eventually you will be creating a private method to replace all of these code blocks.

Notice that I call the display_error_msg() method from many places in the code. If you take
a look at listing line 933 you will see that tiny snippet of code I talked about in the last module
was placed into its own method where it could serve many purposes.

Listing line 402 contains a call to pad_draw_dt_str(). I had to create that method to allow for
partial date entry. I probably shouldn' have called it in the addRecord() method because it will
allow for a user to enter a partial date when adding a record. The method will use the date string
“19990101” when it is looking to fill in missing date components.



Chapter 2 — Mega-Zillionaire Application 153

The section of code at listing lines 493 through 504 contains a serious multi-user problem. I
dutifully found the record to update, moved in the values, and wrote it back to the file. What I
didn' t do was check to seavhether any other user or process had changed the values of that record
between the time the entry screen loaded it and the user chose to save it.

We don' have anything interesting to talk about until we get down to listing lines 762 and
763. This is the first, and only, time I use the StatDBF class we created. Notice how I passed a
short name without extension to the create_database() method. I do not know if the xBasel
library has a file name length limitation, but it was 8.3 at one point during the days of DOS. Since
I will be adding ‘k0” to the end of the name to create the NDX files, I opted to pass only 6
characters in. I also allow Java garbage collection to close off these files sometime after the
objects go out of scope.

Listing line 832 contains another version of that message dialog. This time we pass
PLAIN_MESSAGE as the option so Swing displays a run-of-the-mill status message dialog
instead of an error message.

Listing lines 969 through 972 contain an if statement which is replicated in a few places. Here
we call the deleted() method provided by the DBF class to determine if we display a space or an
“in the Deleted field on the screen.

Notice that each ‘find” method in this class stores the values found in class global fields. You
need to pay attention to that design feature if you intend to complete one of the assignments
coming up at the end of the chapter.

Listing lines 978 and 979 may require a tiny bit of explanation. The object which allows for
date entry on our panel is a simple JformattedTextField. I chose not to play games trying to make
this display with a pretty format. It' siot that I don' tike pretty date formats, it' gust that I didn' t
want to install and include the apache libraries to get their JdateField object and I didn' want to
complicate the entry sequence by creating a JDateChooser object. The end result is that we have
to convert the date from the database from string to a date object Java likes, then format it to a
new string to convert to an Integer object. The conversion from string into a date data type helps
validate the column on the database. We could choose to trust it, but why bother when it doesn' t
cost that many cycles to be sure?

There you have it: The biggest source file I' & shown you so far in this book. Perhaps you
noticed we talked more about the Java aspects of this module than the xBaseJ aspects. You
already have most of the fundamentals down. The purpose of this chapter is to give you ideas on
how to bolt them together correctly, at least from a design standpoint.



154 Chapter 2 — Mega-Zillionarre Application

2.4 The Import Dialog

The import dialog is going to seem really lame after the main portion of this application. 1
chose to make the import module a dialog before I started writing the rest of the application.
There was actually a method to the madness. If the Import function was simply another panel, it
would be possible for a user to choose a file name, then leave the screen by selecting another
menu option. He or she would not have actually performed the import, but might believe it was
complete. Making this a dialog stopped that from happening.

MegaXImport.java

1) package com.logikal.megazillxBased;
2)
3) import java.awt.*;
4) import java.awt.event.*;
5) import javax.swing.*;
6) import javax.swing.filechooser.*;
7) import java.text.*;
8) import java.util.*;
9) import java.io.*;
10)
11) import org.xBasedJ.*;
12) import org.xBaseJ.fields.*;
13) import org.xBaseJ.Util.*;
14) import org.xBaseJ.indexes.NDX;
15)
16) import com.logikal.megazillxBaseJ.MegaDBF;
17)
18) public class MegaXImport extends JDialog implements ActionListener({
19) // Variables
20) public JButton importData=null;
21) public JButton exitButton=null;
22) public JButton chooseFile=null;
23) private JTextField csvNameField=null;
24) private JPanel linelPanel=null;
25) private JPanel line2Panel=null;
26) private MegaDBF MegaDB = null;
27) private String CsvName=null;
28) private JTextArea importRptArea;
29) private JScrollPane sp;
30) private JFileChooser fc;
31)
32)
33) // constructor
34) public MegaXImport (Frame owner) {
35)
36) super ( owner, "Import CSV", true); // constructor for parent class
37) setSize( 800, 500);
38) setLayout ( new FlowLayout ());
39)
40) linelPanel = new JPanel( new FlowLayout ( FlowLayout.LEFT));
41) JLabel csvNameLabel = new JLabel ("CSV File:");
42) linelPanel.add (csvNameLabel) ;
43)
44) csvNameField = new JTextField (40);
45) csvNameField.setEditable ( false);
46) linelPanel.add (csvNameField) ;
)



Chapter 2 — Mega-Zillionarre Application

48) line2Panel = new JPanel ( new FlowLayout ( FlowLayout.LEFT));
49)

50) importRptArea = new JTextArea();

51) // Gives you a fixed width font.

52) importRptArea.setFont (new Font ("Courier", Font.PLAIN, 12));
53 importRptArea.setEditable( false);

54 importRptArea.setTabSize (4);

)
)
55) importRptArea.setColumns ( 80);
)
)
)

56 importRptArea.setRows (1000) ;

57 importRptArea.setDoubleBuffered( true);

58 sp = new JScrollPane( importRptArea);

59) sp.setPreferredSize( new Dimension( 500, 300));
60)

61) line2Panel.add (sp);

62)

63)

64) chooseFile = new JButton();

65) chooseFile.setText ("Choose File");

66) chooseFile.addActionListener ( this);

67) linelPanel.add( chooseFile);

68)

69) importData = new JButton();

70) importData.setText ("OK") ;

71) importData.addActionListener ( this);

72) line2Panel.add (importData) ;

73)

74) exitButton = new JButton();

75) exitButton.setText ( "Exit");

76) exitButton.addActionListener ( this);

77) line2Panel.add (exitButton) ;

78)

79) add( linelPanel);

80) add ( line2Panel);

81) chooseFile.requestFocus () ;

82) getRootPane () .setDefaultButton( importData);
83)

84) setLocationRelativeTo (owner) ;

85)

86) MegaDB = new MegaDBF () ;

87)

88) } // end constructor for RdbLogin

89)

90)

91) [liiiii

92) // Obtain file name and kick off import process
93) /liiiii

94) public void actionPerformed (ActionEvent event) {
95)

96) String actionStr = event.getActionCommand () ;
97) if (actionStr.indexOf ( "Exit") > -1) {

98) this.setVisible( false);

99) return;

100) }

101)

102) if (actionStr.indexOf( "Choose") > -1) {
103) fc = new JFileChooser();

104) int ret_val = fc.showOpenDialog(this);
105) if (ret_val == JFileChooser.APPROVE_OPTION) {
106) File f = fc.getSelectedFile();

107) csvNameField.setText ( f.getAbsolutePath());
108) }

109) } // end test for choose actionStr

155



156

111)
112)
113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)
145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)
160)
161)
162)
163)
164)
165)
166)
167)
168)
169)
170)
171)
172)
173)

Chapter 2 — Mega-Zillionaire Application

if (actionStr.indexOf( "OK") > -1) {
if (!importCSV (csvNameField.getText () ))
importRptArea.append( "Import not successfull\n");
importRptArea.append( "please try again\n");
}
}

// end actionPerformed

[liiiii

// Actual import logic happens here

/i

private boolean importCSV( String the_file) {
String line_in_str = null;
long 1_record_count = 0;
boolean eof_flg = false, ret_val = false;
FileReader in_file = null;

BufferedReader input_file = null;

importRptArea.append( "\nAttempting to import " + the_file + "\n");
updateText () ;

try {
in_file = new FileReader( the_file);

} catch (FileNotFoundException f) {
importRptArea.append("File Not Found " + the_file);
eof_flg = true;

} // end catch for file not found

if (eof_flg == true)
return ret_val;

MegaDB.create_database () ;
input_file = new BufferedReader( in_file, 4096);

importRptArea.append ("\nPopulating database\n");
updateText () ;

while (eof_flg == false) {
try {
line_in_str = input_file.readLine();

}

catch (EOFException e) {
importRptArea.append( "End of file exception\n");
eof_flg = true;

}

catch (IOException e) {
importRptArea.append( "An IO Exception occurred\n");
importRptArea.append( e.toString());
//e.printStackTrace () ;
eof_flg = true;

}

if (eof_flg == true) continue;

if (line_in_str == null) {
importRptArea.append( "End of intput file reached\n");
eof_flg = true;
continue;

}

1_record_count++;
String input_flds[] = line_in_str.split( ",");

try f



Chapter 2 — Mega-Zillionarre Application 157

174) MegaDB.No_1.put ( input_flds[1]);

175) MegaDB.No_2.put ( input_f£flds[2]);

176) MegaDB.No_3.put ( input_f£flds([3]);

177) MegaDB.No_4.put ( input_f£flds[4]);

178) MegaDB.No_5.put ( input_f£flds([5]);

179) MegaDB.Mega_No.put ( input_£flds[6]);

180)

181) String date_parts[] = input_£flds[0].split("-");

182) String dt_str = date_parts[0] + date_parts[l] + date_parts
[21;

183) MegaDB.Draw_Dt.put ( dt_str);

184)

185) MegaDB.getDBF () .write () ;

186)

187) } catch ( xBaseJException j) {

188) j.printStackTrace () ;

189) } catch( IOException i) {

190) importRptArea.append( i.getMessage());

191) }

192)

193) if ( (l_record_count % 100) == 0) {

194) importRptArea.append( "Processed " + 1_record_count +

195) " records\n");

196) updateText () ;

197) } // end of test for status message

198)

199) }// end while loop to load records

200)

201) importRptArea.append( "Finished adding " + 1l_record_count +

202) " records\n");

203)

204) return true;

205)

206) } // end importCSV method

207)

208) public void updateText () {

209) importRptArea.invalidate () ;

210) importRptArea.validate();

211) importRptArea.paintImmediately ( importRptArea.getVisibleRect ());

212)

}
213) } // end MegaXImport class

Listing lines 24 and 25 are worthy of note. Some of you may have the impression that a
panel is a screen. As our constructor shows, this is simply not the case. We allocate one panel to
contain the the CSV file name prompt, text field, and the Choose button. A second panel is
created to contain the text area and scroll pane along with the Ok and Exit buttons. When you are
using the FlowLayout instead of the GridLayout it is quite common to have multiple panels in a
containing object. It provides a method of ‘controlling the flow” by grouping objects together.

Notice listing lines 81 through 84. After we have added the panels to the dialog, we have the
button to choose a file request focus but we set the default button to be the import button. If you
have tried running the application you will already have learned ‘the last one in won.” The text
entry field is the field which actually has focus, but the Ok button is highlighted to indicate that
hitting return will activate it.



158 Chapter 2 — Mega-Zillionaire Application

Listing line 104 is what ensures the user must complete the file chooser dialog one way or
another before this dialog continues. I hope you don' find it strange that a dialog can throw up a
dialog which can throw up another dialog that can throw up another dialog. I haven' ¢onducted a

test to see just how deep you can go, but I assume it has something to do with a 2GB memory
limit imposed on many JVM installs.

The dialog returns an integer value to inform us of its completion status. If the user chose
and approved a file name, we call getSelectedFile() to obtain the File object. We then have to call
getAbsolutePath() to obtain the full path name. Under most circumstances, you cannot open the
file unless you provide the full path name. Ididn' provide a starting location for the file chooser
so it will start in the user' home directory instead of the current working directory. If you want it
to start there simply change listing line 103 to read as follows:

fc

new JfileChooser (System.getProperty ("user.dir"));

There isn' tmuch left to discuss in the importCSV() method. You know that I call the
updateText() method to force screen updates so my status messages get displayed while they are
relevant instead of after the task completes. I have already provided you several examples which
read a line of input from a text file and use the String split() method to break it into separate data
items. We have used the Field put() method and the DBF write() method many times over in
previous source listings.

MegaXbase.java

1) import java.awt.*;

2) import java.awt.event.*;

3) import javax.swing.*;

4) import javax.swing.plaf.*;

5)

6) import com.sun.java.swing.plaf.windows.WindowsLookAndFeel;
7) import com.sun.java.swing.plaf.gtk.GTKLookAndFeel;

8) import com.sun.java.swing.plaf.motif.MotifLookAndFeel;
9

10) import com.logikal.megazillxBaseJ.MegaXImport;

11) import com.logikal.megazillxBaseJ.MegaXbaseBrowsePanel;
12) import com.logikal.megazillxBaseJ.MegaXbaseEntryPanel;
13) import com.logikal.megazillxBaseJ.MegaXbaseDuePanel;
14)

15) public class MegaXbase implements ActionListener, ItemListener
16)

17) private JFrame mainFrame=null;

18) private JPanel mainPanel=null;

19) private JMenuBar mb = null;

20) private JPanel blankPanel=null;
21) private MegaXbaseBrowsePanel mxb=null;

22) private MegaXbaseEntryPanel mxe=null;

23) private MegaXbaseDuePanel md=null;

24)

25) final static String MOSTPANEL = "Most Report";

26) final static String DUEPANEL = "Due Report";

27) final static String DUMPPANEL = "Dump Report";

28) final static String ENTRYPANEL = "Entry";



Chapter 2 — Mega-Zillionaire Application 159

29) final static String BLANKPANEL = "Blank";

30) final static String BROWSEPANEL = "Browse";

31)

32) public MegaXbase () {

33) /) —mmmm e

34) // All of this code just to set the look and feel
35) //

36) int nimbus_sub = -1;

37) int motif_sub = -1;

38) int chosen_sub;

39)

40) try {

41) // Set System Look and Feel

42) UIManager.LookAndFeelInfo 1f[] = UIManager.getInstalledLookAndFeels();
43) for( int y=0; y < 1lf.length; y++) {

44) String s = 1f[ y].getName();

45) System.out.println( s);

46) if ( s.indexOf ( "Nimbus") > -1) {

47) nimbus_sub = y;

48) System.out.println( "\tNimbus found");
49) }

50) if ( s.indexOf( "Motif") > -1) {

51) motif_sub = y;

52) System.out.println( "\tMotif found");
53) }

54) }

55)

56) if ( nimbus_sub > -1)

57) chosen_sub = nimbus_sub;

58) else if ( motif_sub > -1)

59) chosen_sub = motif_sub;

60) else chosen_sub = 0;

61)

62) UIManager.setLookAndFeel ( 1f[chosen_sub].getClassName());
63) // UIManager.getSystemLookAndFeelClassName ()) ;
64) }

65) catch (UnsupportedLookAndFeelException e) {

66) System.out.println( "Unsupported look and feel");
67) }

68) catch (ClassNotFoundException e) {

69) System.out.println( "classnotfound");

70) }

71) catch (InstantiationException e) {

72) System.out.println( "Instantiation exeception");
73) }

74) catch (IllegalAccessException e) {

75) System.out.println( "Illegal Access");

76) }

77)

78) mainFrame = new JFrame ("Mega xBaseJ Window");

79) mainFrame.setDefaultCloseOperation( JFrame.EXIT_ON_CLOSE) ;
80)

81) mainFrame.setJMenuBar ( createMenu());

82)

83) mainPanel = new JPanel (new CardLayout());

84) mainPanel.setOpaque (true) ;

85)

86) blankPanel = new JPanel ();

87) mxb = new MegaXbaseBrowsePanel () ;

88) mxe = new MegaXbaseEntryPanel ();

89) md = new MegaXbaseDuePanel () ;

90)

91) mainPanel.add( blankPanel, BLANKPANEL) ;



Chapter 2 — Mega-Zillionaire Application

mainPanel.add( mxb, BROWSEPANEL) ;
mainPanel.add( mxe, ENTRYPANEL) ;
mainPanel.add( md, DUEPANEL);
mainFrame.setContentPane ( mainPanel) ;

mainFrame.setSize (800, 500);
mainFrame.setVisible ( true);

} // end default constructor
private JMenuBar createMenu() {
JMenu fileMenu, reportMenu;

JMenultem menultem;

mb = new JMenuBar () ;

Iiiiii
// Build the File menu
/liiiii

fileMenu = new JMenu ("File");

fileMenu.setMnemonic (KeyEvent .VK_F) ;

fileMenu.getAccessibleContext () .setAccessibleDescription (
"File operation menu");

// Import menu option

menultem = new JMenultem("Import", KeyEvent.VK_TI);

menultem.setAccelerator ( KeyStroke.getKeyStroke ( KeyEvent.VK_TI,
ActionEvent .ALT_MASK)) ;

menultem.getAccessibleContext () .setAccessibleDescription (

"Imports data from CSV creating new DBF");

menultem.setActionCommand ("Import");

menultem.addActionListener ( this);

fileMenu.add( menultem );

// Maintenance Menu Option

menultem = new JMenultem("Maintenance", KeyEvent.VK_M);

menultem.setAccelerator ( KeyStroke.getKeyStroke ( KeyEvent.VK_M,
ActionEvent .ALT_MASK));

menultem.getAccessibleContext () .setAccessibleDescription (

"Manual Entry/Editing/Deletion");

menultem.setActionCommand ("Entry") ;

menultem.addActionListener ( this);

fileMenu.add( menultem) ;

// Browse option

menultem = new JMenultem("Browse", KeyEvent.VK_B);

menultem.setAccelerator( KeyStroke.getKeyStroke( KeyEvent.VK_B,

ActionEvent .ALT_MASK));

menultem.getAccessibleContext () .setAccessibleDescription (
"View Data");

menultem.setActionCommand ("Browse") ;

menultem.addActionListener ( this);

fileMenu.add( menultem);

fileMenu.addSeparator () ;

menultem = new JMenultem("Exit", KeyEvent.VK_X);
menultem.setAccelerator ( KeyStroke.getKeyStroke ( KeyEvent.VK_X,
ActionEvent .ALT_MASK));
menultem.getAccessibleContext () .setAccessibleDescription (
"Exit program");



Chapter 2 — Mega-Zillionaire Application 161

155) menultem.setActionCommand ("Exit") ;

156) menultem.addActionListener ( new ActionListener () {

157) public void actionPerformed(ActionEvent evt) {

158) System.exit (0); }});

159) fileMenu.add( menultem);

160)

161) Iiiiii

162) // Build the File menu

163) /iiiii

164) reportMenu = new JMenu ("Report");

165) reportMenu.setMnemonic (KeyEvent .VK_R) ;

166) reportMenu.getAccessibleContext () .setAccessibleDescription (
167) "Report creation menu");

168)

169) // Import menu option

170) menultem = new JMenultem("Complete Data Dump", KeyEvent.VK_C);
171) menultem.setAccelerator ( KeyStroke.getKeyStroke ( KeyEvent.VK_C,
172) ActionEvent .ALT_MASK));

173) menultem.getAccessibleContext () .setAccessibleDescription (
174) "Reports all data on file");

175) menultem.setActionCommand ("Dump") ;

176) menultem.addActionListener ( this);

177) reportMenu.add ( menultem );

178)

179) menultem = new JMenultem("Most Often Hit", KeyEvent.VK_M);
180) menultem.setAccelerator ( KeyStroke.getKeyStroke ( KeyEvent.VK_M,
181) ActionEvent .ALT_MASK));

182) menultem.getAccessibleContext () .setAccessibleDescription (
183) "Most frequently drawn numbers");

184) menultem.setActionCommand ("Most") ;

185) menultem.addActionListener ( this);

186) reportMenu.add ( menultem );

187)

188) menultem = new JMenultem("Due Numbers", KeyEvent.VK_D);

189) menultem.setAccelerator ( KeyStroke.getKeyStroke ( KeyEvent.VK_D,
190) ActionEvent .ALT_MASK));

191) menultem.getAccessibleContext () .setAccessibleDescription (
192) "Due numbers");

193) menultem.setActionCommand ("Due") ;

194) menultem.addActionListener ( this);

195) reportMenu.add ( menultem );

196)

197) /i

198) // Add the new menus to the bar

199) /i

200) mb.add( fileMenu) ;

201) mb.add ( reportMenu) ;

202)

203) return mb;

204) } // end createMenu method

205)

206)

207)

208) [liiiii

209) // When a user choses a menu item we process it here

210) // If Java would allow a switch to use strings, or would give
211) // the JButton class a number field which got passed to a field in
212) // the ActionEvent class, this code would be a lot cleaner.
213) /iiiii

214) public void actionPerformed( ActionEvent e) {

215) String actionStr = e.getActionCommand() ;

216) System.out.println( "\nSelected action " + actionStr);

217)



162

218)
219)
220)
221)
222)
223)
224)
225)
226)
227)
228)
229)
230)
231)
232)
233)
234)
235)
236)
237)
238)
239)
240)
241)
242)
243)
244)
245)
246)
247)
248)
249)
250)

}

Frame f = (Frame)

if (actionStr.indexOf ( "Import")

MegaXImport importDialog =

importDialog.setVisible (true);

importDialog.dispose();

}

else if
CardLayout cl =
cl.show (mainPanel,

(actionStr.indexOf ("Browse")

SwingUtilities.getAncestorOfClass( Frame.class,

Chapter 2 — Mega-Zillionaire Application

mb) ;

> -1) |
new MegaXImport (

£);

> -1) |

(CardLayout) (mainPanel.getLayout ());
BROWSEPANEL ) ;

} else if (actionStr.indexOf ("Entry") > -1) {
CardLayout cl = (CardLayout) (mainPanel.getLayout());
cl.show(mainPanel, ENTRYPANEL );

} else if (actionStr.indexOf ("Due") > -1) {

CardLayout cl =
cl.show(mainPanel,

} else {
System.out.println(
}

} // end actionPerformed method

(CardLayout) (mainPanel.getLayout ());
DUEPANEL ) ;

"unhandled action");

public void itemStateChanged( ItemEvent e) {

System.out.println(

"state change");

System.out.println( e.toString());

// end MegaXbase class definition

The code for the main menu is just a tiny bit convoluted. Listing lines 41 through 76 exist

because I believe Metal is probably the ugliest Look and Feel anyone could have invented. I

needed to change that look and feel without having this thing crash the first time you tried to

compile it. The safe thing for me to do was scan through the list of Look and Feels which Java

‘thought” were installed. Until the advent of Java 1.6 and the creation of a file called

swing.properties, Java had no real way of finding out about any look and feel Sun didn' t provide.

Traditionally, applications will include an extra JAR file containing a Look and Feel and

make certain that JAR file gets added to the CLASSPATH environment variable. This allows the
code to change a Look and Feel to be much shorter. Simply add an import line at the top and then

replace the try block with a cleaner piece of code.

import com.nilo.plaf.nimrod.*;

try {
UIManager.setLookAndFeel ( new com.nilo.plaf.nimrod.NimRODLookAndFeel());

}

catch

}

(UnsupportedLookAndFeelException e)
System.out.println(

{

"Unsupported look and feel");



Chapter 2 — Mega-Zillionaire Application 163

It shouldn' surprise you to learn that this is exactly what I did to generate the screen shots
shown on page 96. Some Look and Feels have very subtle changes, and some work only on
specific platforms. If you are going to pick one or create one, please make certain it works on «//
desktop operating systems before you release it. I cannot tell you how many Office XP-type look
and feel packages are out there, and every one of them works only on the Windows platform. Gee,
thanks, guys.

If you have not done much Java programming, please let me take the time to point out listing
line 78. We have not declared an instance of this, as our classes have all been support or panel
classes up to this point. An application requires you to construct a frame. The frame is a
container with an optional title that holds all other components which make up the application.

Listing line 79 is one line you won' t notice you forgot until you try to close the application. If
you started it from the command line, your prompt won' teturn. The window will be gone, but
the app will still be running. At that point you either get very good with system utilities to find it,
or reboot and hope your operating system doesn' ttry to ‘help you out” by restarting all
applications which were running at time of shutdown.

After calling a method to create our menubar at listing line 81, I create an instance of each
panel and add each to the mainPanel along with a String name so I can find it again. Once I have
all of the panels added, I set the content pane of the frame to be the mainPanel. Trust me, it
sounds far more complex than it is.

Why do you think I added a blank panel?

Come on, think about it. Why would I add a blank panel to the application and give it a name
so I could find it again? Perhaps to clear the screen? That would be the correct answer. I run into
a lot of GUI-based menu applications written with a lot of different tools and a lot of them have
the same bug. Once you change that initial panel under the menu, they don' provide any method
of clearing it other than exiting the program and re-entering.

The createMenu() method shows the funky process Java makes a developer endure just to
build a standard menu. To a human, the whole thing, File+Report+drop downs, is the menu. In
Swing, File is its own menu as well as Reports. Each menu is hung on the menuBar and the name
of the menu is displayed at that location on the menuBar.



164 Chapter 2 — Mega-Zillionarre Application

Please pay attention to the nested if-else structure starting at listing line 220. Your
assignments will require you to create new conditions in this structure. Once we identify which
menu option was chosen based upon the text of its action we need to either launch the associated
dialog or shuffle the correct panel to the top. We need the name each panel was added with in
order to find it with the show() method.

testMegaXbase.java

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.plaf.*;

=

import com.logikal.megazillxBaseJ.*;
public class testMegaXbase {

public static void main(String argsl[]) {
MegaXbase mx = new MegaXbase () ;

HFRPRERRPRPRPRRPROOJOYU D WN

G WN R O—— —— — — = —

)
)
)
) }
)
) } // end testMegaXbase class

We don' thave anything to discuss with this module. I simply needed to include it for
completeness. My build command file is equally non-complex.

b.sh

1) #! /bin/bash

2) #

3) #

4) # rm *.dbf

5) # rm *.ndx

6) #

7) javac -source 1.4 -target 1.4 -d MegaDBF. java

8) javac —-source 1.4 -target 1.4 -d . StatDBF.java

9) javac -source 1.4 -target 1.4 -d StatElms. java

10)

11) jar -cfv megaX.jar com/logikal/megazillxBaseJ/MegaDBF.class

12) jar -ufv megaX.jar com/logikal/megazillxBasedJ/StatDBF.class

13) jar -ufv megaX.jar com/logikal/megazillxBased/StatElms.class

14) #

15) javac -source 1.4 -target 1.4 -d MegaXImport. java

16) javac —-source 1.4 -target 1.4 -d MegaXbaseBrowsePanel. java

17) javac -source 1.4 -target 1.4 -d MegaXbaseEntryPanel. java

18) javac —-source 1.4 -target 1.4 -d MegaXDueElms. java

19) #

20) jar -ufv megaX.jar com/logikal/megazillxBaseJ/MegaXbaseBrowsePanel.class
21) jar -ufv megaX.jar com/logikal/megazillxBasedJ/MegaXImport.class
22) jar -ufv megaX.jar com/logikal/megazillxBased/MegaXbaseEntryPanel.class
23) jar -ufv megaX.jar com/logikal/megazillxBaseJ/MegaXDueElms.class
24) #

25) javac —-source 1.4 -target 1.4 -d . MegaXbaseDuePanel. java

26) #

27) jar -ufv megaX.jar com/logikal/megazillxBaseJ/MegaXbaseDuePanel.class
28) #

29) javac -source 1.4 -target 1.4 MegaXbase.java

30) #



Chapter 2 — Mega-Zillionaire Application 165

31) Jjavac -source 1.4 -target 1.4 testMegaXbase.java
32)
33) Jjavac -source 1.4 -target 1.4 testNDXBug.java

The -source qualifier tells the Java compiler to restrict the input source to 1.4 syntax. We
control the bytecode output by the -target switch, which tells the Java compiler to generate
bytecode sequences which are compatible with version 1.4 JVMs.

I put almost all of this code into a JAR file. Whenever you wish to create a package you need
to indicate to the Java compiler where to put the class files. This is done by the ‘package”
statement in the source file and the ““d .” switch I put on the command line. This switch tells the
compiler to use the current directory as the root of the package.

roland@logikaldesktop:~/mega_xbasej$ ./b.sh

added manifest

adding: com/logikal/megazillxBaseJ/MegaDBF.class (in 429) (out= 2404) (deflated 45%)

adding: com/logikal/megazillxBaseJ/StatDBF.class (in 152) (out= 2227) (deflated 46%)

adding: com/logikal/megazillxBaseJ/StatElms.class (in = 394) (out= 282) (deflated 28%)

adding: com/logikal/megazillxBaseJ/MegaXbaseBrowsePanel.class(in = 5063) (out= 2713) (deflated 46%)
adding: com/logikal/megazillxBaseJ/MegaXImport.class(in = 5728) (out= 3134) (deflated 45%)

adding: com/logikal/megazillxBaseJ/MegaXbaseEntryPanel.class(in = 20237) (out= 8860) (deflated 56%)
adding: com/logikal/megazillxBaseJ/MegaXDueElms.class (in = 823) (out= 546) (deflated 33%)

adding: com/logikal/megazillxBaseJ/MegaXbaseDuePanel.class(in = 6054) (out= 3189) (deflated 47%)
roland@logikaldesktop:~/mega_xbasej$ dir com

=4
=4

logikal

roland@logikaldesktop:~/mega_xbasej$ dir com/logikal

megazillxBased

roland@logikaldesktop:~/mega_xbasej$ dir com/logikal/megazillxBased

MegaDBF.class MegaXbaseDuePanel.class MegaXbaseEntryPanel.class MegaXImport.class
StatElms.class

MegaXbaseBrowsePanel.class MegaXbaseEntryPanel$l.class MegaXDueElms.class StatDBF.class

One thing which may be confusing to many of you is that Linux uses /” as a directory

separator, Java uses “”, and DOS (Windows) uses “\”. If you type ‘dir com.logikal” and nothing
appears it' s simply a user error.

2.5 Programming Assignment 1

Modify the updateRecord() method of the Entry module to make certain no values have
changed on the file record between the time of reading and the time of attempted update. If they
have, issue an appropriate error message and stop the update. You can test this by changing a
record, updating it, then find the same record again and perform an Import between the time you
find it and the time you write your new changes to the database.

2.6 Programming Assignment 2

Modify the Entry module by creating a clearScreen() method which consists of the code
found at listing lines 348 through 358. Replace all such code occurrences by a call to your new
method. Test the application to ensure it is working. How many lines of code did you save?



166 Chapter 2 — Mega-Zillionaire Application

2.7 Programming Assignment 3

Modify the open_database() method of StatDBF.java to check whether the database is already
open. If it is open, close the currently open database before proceeding with the open.

2.8 Programming Assignment 4

There are currently two reports listed on the menu which do not currently have any
implementation provided. The ‘Most Often Hit” report can easily be implemented by providing a
new class, MegaXMostElms, which compares only the hit counts. You can then clone the Due
report, changing report headings, while loops, and array data type names. Ze certamn your new
report runs fiom the meni!

You have to create the dump report from scratch. There is nothing complex about it. The
report will be very much like the browse window except that records will be written to a text area
instead of a spreadsheet.

2.9 Summary

This chapter has been meant to provide a real-world example to help users new to xBaselJ,
and possibly even new to Java, get up to speed. Most of the examples you find on-line are very
‘one-shot” in nature. An attempt was made to provide you with a nearly complete business-type
application. You should be able to pick and choose pieces of this design for your own use. Doz’ 7
Just steal the code, consider the design/

Professional developers can design their way around most of the critical weak points found in
any toolset they are forced to use. People who cut and paste code without considering the design
constraints in effect at the time tend to blindly stumble into every critical flaw known to man.
Don' t stumble around; read the explanation which has been provided first.

You now know how to add records to a data file, create an NDX file, and read records both in
index order and directly. More importantly, you have been informed of some of the bugs and
been shown code which works around them. There is no reason you should not be able to
develop usable applications after having read this entire book. You might ‘think” you can
develop applications after merely skimming this chapter and stealing the code, but you would be
mistaken. The beginning of this book provides you with questions you need to ask before
designing any application. The most important question of all is ‘S hould you be using an xXBASE
file to store this data?”



Chapter 2 — Mega-Zillionarre Application 167

Too many application developers simply reach for what they used last time without
considering the lifespan of what they will produce. Sometimes this lapse leads to overkill, such as
a complete MySQL database to store 50 records, and other times it is under-kill, such as trying to
manage what is now a 100,000-item product catalog with xBASE files. You must look at the
current need and the potential future need when designing an application.

Whenever you have a system which will be used by only one person, will store fewer than a
couple thousand records, and needs to be stand-alone, xBASE files are a good option. Just be
certain you aren' limiting someone' future when you make the decision. I see a lot of comments
and messages on-line to the various commercial XBASE engine providers from people and
companies who have been developing a system with the tool in question since the 1980s. Business
kept growing and they kept customizing, and now they issue pleas to the vendors to do something
about the 2GB limit, as they have had to hack their systems to support multiple primary DBF files.

Laugh all you want -- I' & actually read more than one message like that recently. I' mmot
trying to discourage you from using this tool, I' ntrying to educate you as to its proper use. In
each case, those poor bastards started out with a few hundred items, but business grew into a few
hundred thousand items and their custom system now cannot handle it. They are now looking at a
complete system redevelopment, and as the emails suggest, are willing to try anything to avoid it.

Certain applications will always lend themselves to a small self-contained indexed file
system. Our lottery tracker is a good example. Personal income tax filing systems are another.
Small retail systems can do very well, but you have to develop complete IO classes to completely
shield the application from data storage. I do mean completely shield. Your main application can
never use an object from the library or trap an exception from it. Instead of having your Field
objects public as I did, you have to make them private and write a unique get() and set() method
for each column. Most of you won' do this. Instead you will develop much as I have shown you.
It seems pretty clean at first glance, until you try to replace the underlying database with
PostgreSQL or MySQL. Then it becomes a re-write. If you are designing for the here and now
knowing there could be a migration, you have to design in the migration path now, not later.



168 Chapter 2 — Mega-Zillionaire Application

As a community project, xBaseJ is almost perfect. I' nmot saying that it is bug-free, I' m
saying it is the perfect class of project for a community (OpenSource) effort. There are literally
hundreds of places on-line containing documentation about the various xBASE formats. There
are many Python, Perl, and C/C++ OpenSource xBASE libraries one can obtain the source code
for as well. Despite their current Java skill level, developers participating in the project can
obtain all the information they need without having to have a large support forum. You can even
test your changes for interoperability with the other OpenSource xBASE projects so you don' t
have to wonder if you did them correctly. If it works cleanly with two other OpenSource
products, you did it correctly enough for the OpenSource community. Remember, there is no
ANSI standard for xBASE. What really matters is that all of the stuff in the OpenSource world
works together. Don' forget that OpenOffice and KSpread both provide the ability to open a DBF
file directly. Be sure to test your results with these applications as well. Some day IBM may even
add direct support for DBF files to Lotus Symphony.

2.10 Review Questions

What does CUA stand for?

What is the default look and feel for Java applications?

What DBF method tells you if a record has been deleted?

Under what conditions is it okay to load DBF contents into a spreadsheet?

wok W=

After opening an existing DBF and attaching one or more existing NDX files, what should
you do?

6. Are the various Field variable names required to match their corresponding xBASE
column names?

~

What interface must a class implement in order for it to be used with an Arrays.sort() call?

8. Does the statement:
MegaXDueElms d_elms[] = new MegaXDueElms [ELM_COUNT];

completely allocate an array of MegaXDueElms or do you still have to create each
individual element? If create, what is the syntax to create an element?
9. What String method must be used when attempting to convert the result of a get() for a
NumField to an Integer()? Why?
10. What javac command line option restricts the content of your source code?



Chapter 3

Ruminations

Some of you may not be familiar with this book series, so let me explain. I try to end each
one with a chapter named Ruminations. These are essays about IT and life in general meant to
make you think. Some may very well piss you off or morally offend you. So be it. Some may
cause you to shout out support on a crowded train or plane when most everybody is asleep. So be
it.

In short, this chapter is my reward for writing the book and may very well be your reward for
reading it. On the whole, you should take away something from each essay which makes you a
more worldly IT developer, if not a better person.

Enjoy!

3.1 Authoritative Resources

The events I' mabout to relate actually occurred while I was writing this book. The primary
developer/creator of the xBaseJ OpenSource project was shocked, to put it mildly, that I didn' @se
Eclipse for Java development. He mentioned some “Authoritative Resources” claiming some
extremely high percentage of developers used Eclipse to write Java. I' vdeen in IT long enough
to know the truth about those ‘authoritative resources,” so please allow me to shed some light on
the subject.

Most of these “Authoritative Resources” come from a publisher or a supposedly independent
analyst. The vast majority also point to a survey done by some standards body to help re-enforce
their own manufactured data. Such surveys draw in the gullible (read that MBAs) who haven' t
got even the slightest technical clue. In short, people running around quoting these ‘authoritative
resources” without any concept of how the data was obtained are naively helping to perpetrate a
fraud.

It is not often in this book series that you will find it spouting any percentage pulled from any
place other than my direct experiences in life. I hold this series to a much higher standard than
the mass market publishers hawking everything from romance novels, to cook books, to
supposedly scholarly tomes on IT. The content in this book series comes from a trench warrior,
not a wishful thinker or a marketing department.



170 Chapter 3 - Ruminations

Given everything I have just told you, it should come as no surprise I wrote an essay on this
when the developer quoted a mass market publisher and a standards body as the source of his
information. The version presented here is a slightly more sanitized version of what I told him.
You see, he forgot that he was talking to not only an author, but a book publisher. I know the
publishing game. At least I know the kind of game played by the mass market houses.

When mass market Publisher X puts out a bunch of ‘free” information stating that N% of all
developers are currently using technology Z you can pretty much bet that this information was
written by the marketing department and has absolutely no basis in fact. You can pretty much
prove this by looking at their title selection and counting the number of titles they have ‘recently”
released covering competing technologies. You will find fifteen to twenty titles covering the N%
technology and its complimentary topics (an example would be Eclipse + Java + OOP) and at best
two ‘recent” titles on competing technologies (Kate, SciTE, jEdit, TEA, C/C++, Python, etc.)

The ‘tecent” qualifier is most important. You will find dozens of titles on C/C++ from the
mass market houses, but very few published in the past two years. The mass market houses (and
Microsoft for that matter) make money only if technology is continually being replaced. You will
find both mass market publishers and retail software vendors trying to create trends where none
exist (or are needed) simply to generate revenue. The vast majority of people working for either
vendor will completely ignore the fact that once a business application is written and in place, it
tends to stay around for 30 years.

Oh, please, don' take my word for how long business applications stay in place once written.
Simply search through the news archives for all of those Y2K stories talking about systems which
have been making money for companies for roughly 30 years. When you are done with that,
search for all of the current stories about ‘Heritage Data Silos” and ‘Legacy Systems.” Any
application more than eight years old tends to fall into the ‘heritage” category. When Microsoft
found itself being viewed as a ‘legacy” system with XP, they quickly tried to re-invent themselves
as an Indian software company via the release of Windows Vista. It was such a rousing success,
with high-ranking business officials from around the globe giving interviews stating their
companies would never “upgrade” that Microsoft had to pull a lot of the development back
onshore and put out a billable bug fix labeled ‘Windows 7.” They have removed the word
“Vista” from most everything they control. Once again, go search for the articles, don' just quote
me.



Chapter 3 Ruminations 171

So, when mass market Publisher X tells you that 80% of all developers are using tool Z, you
look and see that they said the same thing eight years ago about tool C and haven' published a
book on tool C in the past 6 years. Oh my! They currently have eleven books in print on tool Z
and and a search of the Books In Print database shows they have four more being published this
year. What happened to all of those applications written using tool C? Hmmm. Nary a word is
spoken about that. Businesses must re-write 100% of their applications each and every time mass
market Publisher X wants to sell more books. No wonder businesses are having trouble making
money!

Of course Publisher X will try to quote some survey from a recognized standards or
intellectual body like IEEE or ACM. IEEE is a standards body. I' vaever belonged to IEEE, but
I have belonged to ACM and DECus. I currently belong to Encompass. Let me tell you how
numbers get generated by such organizations. They send out a survey to their members. Those
who respond right away are those working in academia and are desperate to have a quote printed
somewhere because they are in a publish-or-perish world. Everyone else, those working for a
living, file the email away saying they will get to it when time allows. Less than 1% of those
people actually get around to responding, which is roughly the same number of members who
bother to vote for the organization' {eaders. So, when an organization like this puts out a number
saying 80% of its surveyed members use tool Z, it' seally 80% of 1%. The number is valid as far
as it goes, but it doesn' t go very far.

If you have never been a voting member of any organization, you probably don' have a good
frame of reference for this. You see, most of these organizations provide some hook to keep
members, then pretty much disregard the wishes of their membership. In one case, you have to be
a member to obtain a free Hobbyist operating system license. The organization then turns around
and completely disregards any and all who have an interest in that operating system because the
token few on the board are busy trying to kiss up to a vendor championing a far less capable
operating system. No matter how many people cast ballots, only the names in the leadership
change, not the actual leadership. Most get tired of fighting the battle. They take the free license,
do what they need to do with it, and let the scam continue.

The scam gets even worse when marketing firms try to relabel a portion of themselves as
‘industry analysts.” I cannot tell you how many MBAs get handed four-color marketing glossies
and honestly buy the story that this was independent industry research.

Simply put, almost nobody goes to prison for wire or mail fraud these days, certainly not the
marketing departments for publicly traded companies. This means that there are no
“Authoritative Resources” for current trends in software, simply marketing fraud, which most are
conditioned to follow.



172 Chapter 3 - Ruminations

3.2 Timestamps on Reports

This won' be a long lecture, but it is one I need to cover in this edition. Hopefully, you have
been a loyal reader from the logic book through the first edition of this application development
book, Java, SOA, and now this very book. This discussion will make more sense to my loyal
readers than my casual readers.

During the 70s and early 80s when jobs were run only daily or weekly we would put the date
on the flag page and sometimes on the first heading line. Some report writing standards had each
job creating its own ‘heading page” or “cover page” as the first page in the report file. This page
would be the only place non-detail-level date information was placed.

Before the young whippersnappers reading this get all up in arms about our standards, let me
paint a picture of the times. The vast majority of reports came from batch jobs run by computer
operators. These jobs were either part of a regularly scheduled production cycle, or they were
requested by various managers ‘on demand” and the lead operator would work them into the
schedule. (Not all data was kept on-line back then, so jobs had to be scheduled based upon
availability of tape and removable disk drives.) There was no such thing as a ‘personal printer”
and very few “work group” printers scattered around the campus from which users could print
their own reports. (In truth, probably the biggest driving force behind floppy-based personal
computers getting into companies probably wasn' the software, but the fact you could get $300
dot matrix printers to go with them. An office worker who generated a lot of paper had a better
chance of surviving a layoff than an office worker who simply fetched coffee and attended
meetings.)

The most important thing for you to remember is that printers were expensive, noisy, and
used tractor-fed continuous form. Unlike today' slaser printers which will take one or more
bundles of copier paper and quietly hum out hundreds of duplex-printed pages sitting on a table in
the center of a workgroup, early printers had to be kept in the machine room because of the sound
dampening and security provided by that room. Most reports of the day were financial in nature.
You certainly didn' twant just anybody knowing you were 120 days past due for all of your
vendors.

Many jobs would come off the system printer before an operator got around to separating
them. Normally the batch jobs creating them would print the report with a statement like this:

$ PRINT/FLAG/BURST/NOTE="Deliver to Roland created ''fS$time()'” some.rpt



Chapter 3 Ruminations 173

The /BURST qualifier would cause two flag pages with a ‘burst bar” printed between them.
A burst bar was simply a bunch of characters printed near the common edge of the flag pages
several lines deep. This made it easy for operations staff to find the reports when flipping through
the pile of paper in front of them. The /NOTE contents would be printed in a specific location on
each flag page. Full time operations staff knew to look for this. As turnover increased, and good
letter-quality printers came into being, it was common for operations staff to have a print job
which printed up nice cover sheets for all regularly scheduled jobs. The operator would then
staple the cover sheet (which said who received this particular copy) to the front of each report
copy. The ‘one off”jobs still required more senior operations staff to ensure proper delivery.

We weren' bpbsessed with the time portion displayed on the flag page of a report, unless we
had some service level agreement for some muckety-muck that absolutely had to have Report A
in his hands by 9:05 A.M. Yes, I' vavorked for people like that before. I even stuck around one
day after the report was delivered late just to see what he did with it. He handed it to his secretary
who put it in a binder and filed it in a cabinet. We still got beat up for delivering late, but word
got out that he didn' t actually use that report.

During the mid 1980s we started to see cheap serial printers scattered about company
locations and print queues created specifically for end users. Some of our batch jobs even started
to print reports directly to those printers so operations didn' have to deliver them. Once users
started being able to run reports from their menus we had to start having reporting standards
which placed the time on the very first line of every page heading. Most shops reported the time
on the left margin of the first line as I' & shown you in this book. The time remained the same for
an entire report. We didn' tgo out and snag a new timestamp each time we printed report
headings. Most users were okay with the time being consistent on all page headings.

We started getting into trouble with long running jobs that used shared indexed files. We got
into even more trouble when relational databases were introduced into the mix along with lower
disk prices. Reports which took hours to run could have some transactions come into the files
which would skew results. To help you understand the pain, try thinking about what happens
when a billing job for a credit card company is running while transactions are posting.

Bill and Fred both walk into the same store with their credit card issued by the same company
and have the same 27-day billing cycle ending on the very same day. They check out at the exact
same time on two different registers. Bill' s acount begins with 04 and Fred' sccount begins with
98. Bill' statement has already been created at the time the authorization went through so his
charge won' t appear until next month.It just plain sucks to be Fred at this point.



174 Chapter 3 - Ruminations

This is the era of the 24-hour lifestyle and instant gratification. Large batch jobs like credit
card invoicing still happen. Companies will create dozens, if not thousands, of print files each
containing hundreds, if not thousands, of individual credit card statements. In some obscure
location, and possibly encrypted, each statement will have the timestamp printed on it. It may
even be printed using a very small font in what looks like a running page footer. Employees of
the credit card company will know how to read it. They will divulge this knowledge during a
customer service call when explaining to a husband and wife who made charges at the exact same
time in the exact same store on their personal credit cards why only one had the charge show up
on the statement.

While many reports on the Internet will be generated by some Java or Javascript calls to
back-end report services, the services themselves will most likely be on a trusty OpenVMS cluster
or an IBM mainframe. The Web pages which will receive the information will be in the business
of aggregating this information from the different reporting services they are calling. It is really
funny when they don' bother coordinating ‘as of” timestamps from the various back-end services
prior to display.

Once again we can use credit cards as an example. Many people have a credit card which
will give them some kind of award, such as airline miles or hotel bucks or some such thing.
When a user opens up an online account to monitor this information he or she usually gets
presented some kind of ‘Summary” screen. The summary screen will coordinate responses
received from all of the back-end services into one cohesive display showing current charges,
payments, mileage, hotel bucks, etc. Most of the responses it chews on to create the display will
be stored in some temporary storage on the Web browsing computer, usually in the form of a
cookie, but could be anything. Things get hilarious when one or more of the back-end services
are down but you haven' teleted all your cookies nor emptied your cache since your last visit to
the site. You look at a summary report showing your last time' sawarded mileage (or charges)
with this time' <harges (or mileage). These things get to be a problem when you are looking to
use up your miles for your vacation.

Many PC-based operating systems will only give you a timestamp down to the number of
seconds since midnight January 1, 1970. That level of resolution is not enough for today' svorld.
It might get you by on a report heading, but not at the transaction level. Given that most of your
time arguments are going to be about transaction level data, you need to provide some method of
defending yourself when the argument becomes ‘why did this transaction show up on this
invoice?” If your report page heading contains only the start time and there is no report footer
containing the completion time, how do you defend yourself?



Chapter 3 Ruminations 175

Let me leave you pondering reporting timestamps with this little ditty.

At any given stock exchange around the world, there will be orders coming in at a furious
pace along with consolidated last sales. Orders which aren' tmarket” orders (meaning to buy or
sell at the ‘ma rket” price) get placed in the book to become part of the current market. The actual
current market price is determined by the consolidated last sale, which is generated every second
or so (longer time spans for lightly traded stocks) by sales which are “printed to tape.” The
consolidated last sale has the effect of causing orders in the specialist’ ook to suddenly be due a
fill, and in some cases these automatically execute. Any executed order has its sale information
sent to the primary exchange for that issue to become part of the next consolidated last sale. It is
called ‘consolidated” because it is a calculated value based upon all sales ‘printed to tape” during
the calculation time span. (Trade information used to print on paper tapes called ‘ticker tapes.”
Now that trade information is sent to the primary exchange in a particular data format, but the
lingo ‘printed to tape” still exists.)

Things get dicey with market orders. Many exchanges can allow a market order to be briefly
held for manual price improvement. There is no fear of the market moving because the market
order is required to be tagged with the consolidated last sale value that was in effect at the time the
market order came in or ‘current last sale price .”

This last paragraph sounds kind of simple, doesn' it? It is...until you get around to defining
‘current.” High-volume stocks with millions or billions of transactions per day can require
‘current” to be down to the nanosecond. Now we get into the issue of ‘in effect.” Technically
that consolidated last sale is ‘in effect” the nanosecond the primary market sends it out. The
reality is that it takes more than a nanosecond for that last sale to transmit from one coast to the
other and be recorded. Once it is recorded, all of the ‘book checking” then happens to see if any
fixed price orders are now due a fill.

When I was just starting in Junior College, this time thing was something only academics
thought about. We had disk seek times measured in seconds, and those seeks only happened once
an operator got around to mounting the removable disk...if we were lucky enough to be using a
disk. Now that I' mapproaching the autumn of my career it is becoming a real issue. To those of
you just starting out, what can I say other than, ‘it sucks to be you, Fred.”



176 Chapter 3 - Ruminations

3.3 Doomed to Failure and Too Stupid to Know

I get a lot of phone calls and emails for contracts. There are few phone calls more
entertaining than ‘large project to get off of OpenVMS.” Inevitably, these projects are run by the
Big N consulting firms with all of the actual work whored out to ‘preferred vendors.” Recently, I
got another one of these calls. Here is pretty much how it went. (Caller is in blue.)

“How many years have you worked on OpenVMS?”
“20 plus.”
“How many years have you worked with a thing called PowerHouse?”

“It' sot a thing, it is a 4GL and it was a godsend when it came out. I' vdeen working with it
since the VAX 11/750 was the pride of most shops.”

“How long is that?”
“Well, DEC was still in business...1985? Shortly after that DEC came out with the Alpha.”

“Oh wow. We have a project to migrate from a VAX. I didn' tealize the hardware was that
old.”

“Most likely you have a project to migrate from either an Alpha or an Itanium. Since
OpenVMS migrated from VAX to Alpha to Itanium, most people still call the hardware which
runs it a VAX. This is wrong, and until we end teacher tenure in this country, the problem isn' t
likely to improve.”

“Oh. Well I' vdbeen more involved in the requirements gathering phase of the project for the
past six months. We are only now starting to look at the existing hardware. They have something
called a multi-node cluster running RDB, have you ever worked on that hardware?”

“Once again, it was OpenVMS. Multiple machines could be clustered together to really
increase computing power and fault tolerance. I' veworked on clusters that ranged in size from
two machines in a room to lots of nodes scattered around the globe. From a development
standpoint it really doesn' t make much difference how many or where they are.”

“Well, I' msure that will come up. We are looking at replacing it with an OpenSource
platform.”



Chapter 3 Ruminations 177

“Well, if they were using RDB on a multi-node cluster, odds are they needed the fault
tolerance the combination provided. You cannot create a fault-tolerant solution via Unix/Linux
because the OS kernel doesn' have the concept of a record. Without the concept of a record, you
cannot have a kernel level lock manager. Without a kernel level lock manager, you cannot
develop a local transaction manager. Without a local transaction manager you cannot build a
distributed transaction manager. Without being able to distribute transactions across a cluster
with two-phase commit, you cannot create fault tolerance.”

“I' m sure we will discuss fault tolerance at some point.”

“You mean to tell me you' veburned through 6 months of billable hours gathering
requirements and never discussed fault tolerance? You never asked if their current system
provided guaranteed delivery + guaranteed execution?”

“We will be using a message queue that provides guaranteed delivery.”

“Without the guaranteed execution part, delivery doesn' tmatter. A distributed transaction
manager like DECdtm allows you to have a single transaction which encompasses a message from
an MQ Series message queue, multiple RMS Journaled file, RDB, ACMS, and every other
product which was developed to participate in a DECdtm transaction. If that transaction is spread
across nine nodes in a cluster and one of those nodes goes down mid-process, DECdtm will
rollback the transaction. If the transaction was also part of an ACMS queued task, ACMS will re-
dispatch the transaction up to N times until it either successfully executes or exceeds the retry
count and has to be routed off to an error handling queue.”

“Oh. Well, those discussions will happen in a couple of months. I can tell you have a lot of
experience on this platform, so I' ngoing to present you to the primary and one of them will get
back to you for a technical interview.”

“You mean to tell me they actually have OpenVMS professionals?”
“Well, it will probably be someone from HR explaining the non-compete and other policies.”

I originally wrote the above essay when I was working on the second edition of ‘The
Minimum You Need to Know to Be an OpenVMS Application Developer.” That edition won' be
out for a couple of years and most of the people who buy/read that book live out the above scene
far too often. It is more appropriate for me to place such a story here, where many of the
problems will come from.



178 Chapter 3 - Ruminations

Oh, don' tgo getting all defensive now. If that statement offended you it is most likely
because you don' know enough about the industry to understand the truth of the matter. We did
not cover writing fault-tolerant applications in this book because doing so is nearly impossible
using an xBASE file format and having no controlling engine providing a barrier between all
applications and the data. Even if you used this library to create such an engine, you would have
to ensure no file used an easily recognizable extension and that the engine had its own user ID
which owned all data files and did not allow shared access. Even if you achieved all of these
things, you would not have provided fault tolerance. These things fix only the data sharing and
index problems which are notorious with xBASE data files.

Fault tolerance is as described above, the transactions continue no matter what fails.

Think about that line. It' smot just an academic mantra. It is a business philosophy where a
BRP (Business Recovery Plan) document isn' treated because the systems are designed to never
allow the business to fail. You will find the vast majority of publicly traded companies either
have a completely untested BRP in place, or have simply never gotten around to writing one. A
token few companies design applications and infrastructure to survive anything.

When the twin towers fell on 9/11 there were companies in those buildings using every
operating system known to man. The companies which were using distributed OpenVMS clusters
hesitated for up to 15 minutes while the cluster made certain all hardware at the location had
ceased to respond, then continued processing each and every transaction. No transaction was lost.
Despite the loss of life and location, the company neither ceased operation nor went out of
business. Every company basing its business on other platforms stopped doing business that day.
Many never returned to business.

I' ntelling this story in a book covering Java and xBASE development to provide you with
some concept of the limitations your tools impose. Developers tend to become enamored with
their choice of development tools. They run around trying to use them in situations in which they
are completely inappropriate. I have sat in conference rooms where Clipper hackers proposed to
use a system written in Clipper to meet all the accounting needs of a Fortune 500 company. They
wanted all data stored on a single instance of a file server which had some minimal RAID
capabilities and honestly believed that was ‘good enough.” Don' t you make this same mistake.



Chapter 3 Ruminations 179

Early on in this book I walked you through the thought process which had me selecting
xBasel] as a development tool for a project. Granted, the project I ended up writing wasn' t
provided in this book, but it is out there. You can find it on SourceForge: http://sourceforge.net/

projects/fuelsurcharge/ I used the lottery application because I always use that application in

order to learn or teach new tools. The thought process used to select the tools is the important
part, not the application I ended up writing.

Re-read the conversation I had with the person who called about the contract. They had
burned six months and not covered the most important question. They had not asked the first
question which must be asked at the start of each requirements gathering session. ‘“What is the
expected availability of this system?”

Would it surprise you to learn that the project was for a healthcare company and that the
system being “replaced” was handling patient records along with prescriptions and pharmacy
dispensing? Would you be shocked to learn that many of the patients being handled by this
system were suffering from HIV and could enter an emergency room on any given minute of any
given 24-hour period and that it might not be a hospital where their doctor works or even be in
their home city or country?

If you think you can use Java on a platform which doesn' provide a distributed lock manager
integrated into the operating system kernel to deliver a system for that environment, you aren' t
any better than the person who called me about the project. In most cases, the combination of
high availability and fault tolerance preclude the use of any kind of VM. In general, a VM
designed to run on multiple platforms cannot make use of a distributed lock manager which was
integrated into the OS kernel of one platform because the lesser platforms the VM runs on don' t
have a prayer of ever having such a tool. If you store 100% of all data in a relational database
which is native to the platform providing the distribured lock manager and integrared with; said
manager, and you have a message queueing system which is integrated with the distributed lock
manager, and a message dispatching system which is not only integrated with the distributed lock
manager, but will rollback and re-dispatch the message when the process handling it hangs or
dies, then and only then, can you think about using a VM-based language for development. Yes,
there were a lot of ands in that sentence, and for good reason.

Before you can go out working in the real world, you need to know two things:
1. The limits of your tools.

2. The first question you ask is “What is this system' s expected availability?”


http://sourceforge.net/projects/fuelsurcharge/
http://sourceforge.net/projects/fuelsurcharge/

180 Chaprter 3 - Ruminations

Availability wasn' tan issue for the lottery tracking application. It was meant to be for a
single person and the database could be completely recreated from a CSV file in just a few steps.
All of the data which went into the CSV file would be gleaned from some state lottery system
Web page, so even the CSV could be recreated from scratch if needed. This type of lottery has
drawings which happen, at most, a few times per week, so a recovery process which takes a day is
fine.

Let' contrast those requirements with an application which must be able to provide medical
records to any hospital in the world for any patient contained in the system. Do you think a 1-2
day recovery period is acceptable? Just how long do you think the emergency room has when a
patient comes in already seizing and the staff needs to identify which medication the patient has
been on before giving him something to help with the seizing? How do you accomplish system
and data backup yet provide the necessary availability? How do you do OS and hardware
upgrades without impacting availability?

As the availability requirement goes up, your tool choices go down and the number of
mandatory questions rises. With a 1-2 day recovery period, we didn' tisk about hardware and
operating system upgrades because they didn' matter. When a system is needed 24x7x365 these
questions become important. Never make the mistake of assuming you can do anything you want
with ‘language A” or “tool Z.” The availability requirements dictate the tools. If management
cannot be made to understand this, you have to either educate them or leave without warning.



Appendix A

Answers to Introduction Review Questions:

How many fields did dBASE /1 allow to be in a record?
128

What general computing term defines the npe of file an xBASE DBF really is?
Relative file

Whar does xBASE mean foday?
It refers to the data storage format used by various applications.

What was the non-commercial predecessor to all x\BASE products?
Vulcan

In terms of the PC and DOS, where did the 64K object/variable size limirt really come fiom?
The LIM (Lotus Intel Microsoft) EMS (Expanded Memory Standard)

What company sold the first commercial xBASE product?
Ashton-Tate

Is there an ANST xBASE standard? Why?

No

Each of the vendors wanted its own product to be the standard put forth by ANSI and they
refused to reach any compromise.

What is the maximum file size fjor a DBF file? Why?
2GB. That is the maximum value for a 32-bit signed integer.

Whart was the maximum number of bytes dBASE /11 allowed in a record? dBASE /77
4000 bytes; 1000bytes.

What form/bpe of data was stored in the original xBASE DBF file?
Character. Numeric fields were converted to character representation before storing.

Can you store variable length records in a DBF file?
No.



Does an xBASE library automartically update all NDX files?
No. It is only required to update those which are both opened and attached.

What is the accepted maximum precision for a Numeric field?
15.9: Total width of 15 with 9 digits of precision.

What is the maximum length of a field or column name?
10 characters

Answers to Chapter 1 Review Questions

What rwo situations force a user or application fo plysically remove deleted records?
1) The DBF reaches the maximum file size.
2) The disk holding the data file runs out of free space.

By defauly, what are string and character fields padded with when using xBase/?
Null bytes.

Hf you have a DBF open with NDX files attached 1o it then call a subroutine which creates new
NDX objects for those same files and calls relndex() on them, will the changes ro the index files be
reflected in the NDX objects your DBF holds? Why or why not?

No.

NDX objects load the entire Btree into RAM and do not monitor data file changes.

Whar two Java classes do you need to use rfo build create a report line making the data line up in
columns?
StringBuilder and Formatter.

How does one rell xBase/ 1o pad string and character fields with spaces?
Util.setxBaseJProperty("fieldFilledWithSpaces","true");

Whar DBF class method physically removes records from the database?
pack()

What is the maximum size of a DBF file?
2GB



Whar DBF class method is used to retrieve a value from a database Field regardless of field Hpe?
get()

Afier creating a sthiny new DBF object and corresponding data file, whar method do you use to
actually create columns in the database?

addField()

Whar DBF class method is used to assign a value to a database Field?
put()

Whar DBF class method do you call to change the NDX key of refernece?
uselndex()

What DBF class method ignores all indexes and pliysically reads a specific record?
gotoRecord()

When you delete a database record, is it actually deleted?
No, it is flagged as deleted.

Whar DBF class method sets the current record to zero and resers the current index pomnler 1o the
root of the current index?
startTop()

What is the main difference between readNext() and findNexr)?

readNext() requires a key of reference to have been established via some other I/O operation
and findNext() does not.

What fiunction or methiod returns the number of records on file?
getRecordCount()

What fuapperns when you attemptr to store a numeric value roo large jor the columnn?
A truncated version of the value is stored

What hiappens when you attempt to store a character valie roo large for the column?
An exception is thrown

When accessing via an index, /iow do you obtain the record occurring before the current record?
findPrev() or readPrev()



Whar DBF method retfurns the number of fields currently in the table?
getFieldCount()

When retrieving data from a database column, what datap)pe is returned?

String

What is the maximum lengtl: of a column name jor most early xBASE formats?
10

What does the instanceof operator really rell you?
Whether an object can be safely cast from one type to another.

Are descending feys directly supported by xBases?
No.

What NDX metfiod can you call 1o refiest index values stored in the NDX file?
relndex()

Whar Java String method allows you to splitr a String into an array of Strings based upon a
delimiting String?
split()

Do NDX objects monitor database changes made by other programs or users.?
No

Can you "undelete” a record in a DBF file? [f so, why and for how long?

Yes.

Records are only flagged as deleted; they are not physically removed until a pack() is
performed on the database.

When a Numeric field is declared with a widih of 6 and 3 decimal places, how many digits can
exist 1o the lefi of the decimal when the field contains a negative value?
1: you must allow one space for the decimal and one space for the negative sign.

When do you need to create a finalize() method jor your class?
Whenever you allocate system resources like files or physical memory directly instead of by
the JVM or using a class which already provides a finalize() method.



Whar Java class provides the readline() method to obramn a line of mmput from a text file or

stream?
BufferedReader

Do xBASE data files provide any builr-in method of dara integriry?
No.

What must exiss, no matter how the data is stored, lo provide data integriry?
An engine or other service through which all data access is routed without exception. That
engine or service is the only method of enforcing data rules.

Answers to Chapter 2 Review Questions

What does CUA stand for?
Common User Access

What is the default look and feel for Java applications?
Metal

Whar DBF method rells you if a record has been deleted?
deleted()

Under what conditions Is it okay o load DBF contents imnto a spreadsheet?
When the data is local and being loaded in read-only mode.

Afier opening an existing DBF and attaching one or more existing NDX files, what should you
do?
relndex()

Are the various Field variable names required fo malch their corresponding xBASE column

names?
No

What interface must a class implement in order for it to be used with an Arrays.sort() call?

Comparator



Does the statement:
MegaXDuellms d_elms/] = new MegaXDuelims/FLM COUNTY/;
completely allocate an array of MegaXDueklms or do you still have to create each mdividual
element?
Create
[f create, what Is the syntax fo create an elemernt?
d_elms[i] = new MegaXDueElms();

Whar String method must be used when attempting fo convert the result of a get() jor a NumfField
1o an lnteger()? why?
trim()

Because parselnt() cannot handle non-numeric characters like spaces.

What javac command line option restricts the content of your source code?
-source



	Why This Book?
	Why xBaseJ?
	A Brief History of xBASE 
	What is xBASE?
	Limits, Restrictions, and Gotchas
	Summary
	Review Questions
	Chapter 1 
	1.1 Our Environment 
	1.2 Open or Create?
	1.3 Example 1
	1.4 Exception Handling and Example 1
	1.5 rollie1.java
	1.6 Programming Assignment 1
	1.7 Size Matters
	1.8 Programming Assignment 2
	1.9 Examining a DBF
	1.10 Programming Assignment 3
	1.11 Descending Indexes and Index Lifespan
	1.12 Programming Assignment 4
	1.13 Deleting and Packing
	1.14 Programming Assignment 5
	1.15 Data Integrity
	1.16 Programming Assignment 6
	1.17 Summary
	1.18 Review Questions

	Chapter 2 
	2.1Why This Example?
	2.2Supporting Classes
	2.3The Panels
	2.4The Import Dialog 
	2.5Programming Assignment 1
	2.6Programming Assignment 2
	2.7Programming Assignment 3
	2.8 Programming Assignment 4
	2.9Summary
	2.10 Review Questions

	Chapter 3 
	3.1Authoritative Resources
	3.2Timestamps on Reports
	3.3Doomed to Failure and Too Stupid to Know
	Answers to Introduction Review Questions:
	Answers to Chapter 1 Review Questions
	Answers to Chapter 2 Review Questions



